Skip to main content

Advertisement

Log in

Development of a method for effective amplification of human adenovirus 40

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Human adenovirus 40 (Ad40) is an interesting candidate for vector construction because of its tropism for the gastrointestinal tract. Although effective preparation of the vector is necessary for its in vivo application, amplification of Ad40 has been very difficult. Ad40 E1 deletion mutants were detected by PCR in the viral DNA from Ad40 Dugan amplified by Ad5 E1-expressing human embryonic kidney (293) cells and in Ad40 Dugan plaques observed with Ad5 E1-expressing human retinoblastic cells. For the purpose of generating a single wild-type Ad40 clone, the entire Ad40 DNA was cloned into a plasmid by homologous recombination. A pure Ad40 was successfully generated by plasmid transfection and subsequently amplified with Ad5 E4orf6-inducible 293 (2V6.11) cells. 2V6.11 is an apposite cell line for effective Ad40 amplification and for future vector construction because Ad40 genetic integrity was maintained with this Ad5 E1 and E4orf6 trans-complementing cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Edelstein ML, Abedi MR, Wixon J (2007) Gene therapy clinical trials worldwide to 2007—an update. J Gene Med 9:833–842

    Article  PubMed  Google Scholar 

  2. Yamamoto M, Curiel DT (2010) Current issues and future directions of oncolytic adenoviruses. Mol Ther 18:243–250

    Article  CAS  PubMed  Google Scholar 

  3. Tiemessen CT, Kidd AH (1994) Adenovirus type 40 and 41 growth in vitro: host range diversity reflected by differences in patterns of DNA replication. J Virol 68:1239–1244

    CAS  PubMed  Google Scholar 

  4. Uhnoo I, Wadell G, Svensson L, Johansson ME (1984) Importance of enteric adenoviruses 40 and 41 in acute gastroenteritis in infants and young children. J Clin Microbiol 20:365–372

    CAS  PubMed  Google Scholar 

  5. Carter MJ (2005) Enterically infecting viruses: pathogenicity, transmission and significance for food and waterborne infection. J Appl Microbiol 98:1354–1380

    Article  CAS  PubMed  Google Scholar 

  6. D’Ambrosio E, Del Grosso N, Chicca A, Midulla M (1982) Neutralizing antibodies against 33 human adenoviruses in normal children in Rome. J Hyg (Lond) 89:155–161

    Google Scholar 

  7. Thorner AR, Vogels R, Kaspers J, Weverling GJ, Holterman L, Lemckert AA, Dilraj A, McNally LM, Jeena PM, Jepsen S, Abbink P, Nanda A, Swanson PE, Bates AT, O’Brien KL, Havenga MJ, Goudsmit J, Barouch DH (2006) Age dependence of adenovirus-specific neutralizing antibody titers in individuals from sub-Saharan Africa. J Clin Microbiol 44:3781–3783

    Article  PubMed  Google Scholar 

  8. Appaiahgari MB, Pandey RM, Vrati S (2007) Seroprevalence of neutralizing antibodies to adenovirus type 5 among children in India: implications for recombinant adenovirus-based vaccines. Clin Vaccine Immunol 14:1053–1055

    Article  CAS  PubMed  Google Scholar 

  9. Dionisio D, Arista S, Vizzi E, Manneschi LI, Di Lollo S, Trotta M, Sterrantino G, Mininni S, Leoncini F (1997) Chronic intestinal infection due to subgenus F type 40 adenovirus in a patient with AIDS. Scand J Infect Dis 29:305–307

    Article  CAS  PubMed  Google Scholar 

  10. Kojaoghlanian T, Flomenberg P, Horwitz MS (2003) The impact of adenovirus infection on the immunocompromised host. Rev Med Virol 13:155–171

    Article  PubMed  Google Scholar 

  11. Echavarria M (2008) Adenoviruses in immunocompromised hosts. Clin Microbiol Rev 21:704–715

    Article  PubMed  Google Scholar 

  12. Brown M (1990) Laboratory identification of adenoviruses associated with gastroenteritis in Canada from 1983 to 1986. J Clin Microbiol 28:1525–1529

    CAS  PubMed  Google Scholar 

  13. Tiemessen CT, Kidd AH (1988) Helper function of adenovirus 2 for adenovirus 41 antigen synthesis in semi-permissive and non-permissive cells. Arch Virol 103:207–218

    Article  CAS  PubMed  Google Scholar 

  14. Mautner V, Mackay N, Steinthorsdottir V (1989) Complementation of enteric adenovirus type 40 for lytic growth in tissue culture by E1B 55K function of adenovirus types 5 and 12. Virology 171:619–622

    Article  CAS  PubMed  Google Scholar 

  15. Hashimoto S, Sakakibara N, Kumai H, Nakai M, Sakuma S, Chiba S, Fujinaga K (1991) Fastidious human adenovirus type 40 can propagate efficiently and produce plaques on a human cell line, A549, derived from lung carcinoma. J Virol 65:2429–2435

    CAS  PubMed  Google Scholar 

  16. Mautner V, Mackay N (1991) Enteric adenovirus type 40: complementation of the E4 defect in Ad2 dl808. Virology 183:433–436

    Article  CAS  PubMed  Google Scholar 

  17. Goodrum FD, Ornelles DA (1999) Roles for the E4 orf6, orf3, and E1B 55-kilodalton proteins in cell cycle-independent adenovirus replication. J Virol 73:7474–7488

    CAS  PubMed  Google Scholar 

  18. de Jong JC, Wigand R, Kidd AH, Wadell G, Kapsenberg JG, Muzerie CJ, Wermenbol AG, Firtzlaff RG (1983) Candidate adenoviruses 40 and 41: fastidious adenoviruses from human infant stool. J Med Virol 11:215–231

    Article  PubMed  Google Scholar 

  19. Fallaux FJ, Kranenburg O, Cramer SJ, Houweling A, Van Ormondt H, Hoeben RC, Van Der Eb AJ (1996) Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum Gene Ther 7:215–222

    Article  CAS  PubMed  Google Scholar 

  20. No D, Yao TP, Evans RM (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci USA 93:3346–3351

    Article  CAS  PubMed  Google Scholar 

  21. Gastwirt RF, Slavin DA, McAndrew CW, Donoghue DJ (2006) Spy1 expression prevents normal cellular responses to DNA damage: inhibition of apoptosis and checkpoint activation. J Biol Chem 281:35425–35435

    Article  CAS  PubMed  Google Scholar 

  22. Mohammadi ES, Ketner EA, Johns DC, Ketner G (2004) Expression of the adenovirus E4 34k oncoprotein inhibits repair of double strand breaks in the cellular genome of a 293-based inducible cell line. Nucleic Acids Res 32:2652–2659

    Article  CAS  PubMed  Google Scholar 

  23. Obert S, O’Connor RJ, Schmid S, Hearing P (1994) The adenovirus E4–6/7 protein transactivates the E2 promoter by inducing dimerization of a heteromeric E2F complex. Mol Cell Biol 14:1333–1346

    CAS  PubMed  Google Scholar 

  24. Thomas MA, Lichtenstein DL, Krajcsi P, Wold WS (2007) A real-time PCR method to rapidly titer adenovirus stocks. Methods Mol Med 130:185–192

    CAS  PubMed  Google Scholar 

  25. Davydova J, Le LP, Gavrikova T, Wang M, Krasnykh V, Yamamoto M (2004) Infectivity-enhanced cyclooxygenase-2-based conditionally replicative adenoviruses for esophageal adenocarcinoma treatment. Cancer Res 64:4319–4327

    Article  CAS  PubMed  Google Scholar 

  26. Steinthorsdottir V, Mautner V (1991) Enteric adenovirus type 40:E1B transcription map and identification of novel E1A–E1B cotranscripts in lytically infected cells. Virology 181:139–149

    Article  CAS  PubMed  Google Scholar 

  27. Sarnow P, Sullivan CA, Levine, AJ (1982) A monoclonal antibody detecting the adenovirus type 5-E1b-58Kd tumor antigen: characterization of the E1b-58Kd tumor antigen in adenovirus-infected and -transformed cells.Virology 120:510–517

    Google Scholar 

  28. Goodrum FD, Shenk T, Ornelles DA (1996) Adenovirus early region 4 34- kilodalton protein directs the nuclear localization of the early region 1B 55-kilodalton protein in primate cells. J Virol 70:6323–6335

    CAS  PubMed  Google Scholar 

  29. Marshall LJ, Moore AC, Ohki M, Kitabayashi I, Patterson D, Ornelles DA (2008) RUNX1 permits E4orf6-directed nuclear localization of the adenovirus E1B-55K protein and associates with centers of viral DNA and RNA synthesis. J Virol 82:6395–6408

    Article  CAS  PubMed  Google Scholar 

  30. Gabler S, Schütt H, Groitl P, Wolf H, Shenk T, Dobner T (1998) E1B 55-kilodalton-associated protein: a cellular protein with RNA-binding activity Implicated in nucleocytoplasmic transport of adenovirus and cellular mRNAs. J Virol 72:7960–7971

    CAS  PubMed  Google Scholar 

  31. Dobbelstein M, Roth J, Kimberly WT, Levine AJ, Shenk T (1997) Nuclear export of theE1B 55-kDa and E4 34-kDa adenoviral oncoproteins mediated by a rev-like signal sequence. EMBO J 16:4276–4284

    Article  CAS  PubMed  Google Scholar 

  32. Brown M, Wilson-Friesen HL, Doane F (1992) A block in release of progeny virus and a high particle-to-infectious unit ratio contribute to poor growth of enteric adenovirus types 40 and 41 in cell culture. J Virol 66:3198–3205

    CAS  PubMed  Google Scholar 

  33. Ishida S, Fujinaga Y, Fujinaga K, Sakamoto N, Hashimoto S (1994) Unusual splice sites in the E1A–E1B cotranscripts synthesized in adenovirus type 40-infected A549 cells. Arch Virol 139:389–402

    Article  CAS  PubMed  Google Scholar 

  34. Saez E, Nelson MC, Eshelman B, Banayo E, Koder A, Cho GJ, Evans RM (2000) Identification of ligands and coligands for the ecdysone-regulated gene switch. Proc Natl Acad Sci USA 97:14512–14517

    Article  CAS  PubMed  Google Scholar 

  35. Bailey A, Ullah R, Mautner V (1994) Cell type specific regulation of expression from the Ad40 E1b promoter in recombinant Ad5/Ad40 viruses. Virology 202:695–706

    Article  CAS  PubMed  Google Scholar 

  36. Mautner V, Bailey A, Steinthorsdottir V, Ullah R, Rinaldi A (1999) Properties of the adenovirus type 40 E1B promoter that contribute to its low transcriptional activity. Virology 265:10–19

    Article  CAS  PubMed  Google Scholar 

  37. Stracker TH, Carson CT, Weitzman MD (2002) Adenovirus oncoproteins inactivate the Mre11-Rad50-NBS1 DNA repair complex. Nature 418:348–352

    Article  CAS  PubMed  Google Scholar 

  38. Croyle MA, Stone M, Amidon GL, Roessler BJ (1998) In vitro and in vivo assessment of adenovirus 41 as a vector for gene delivery to the intestine. Gene Ther 5:645–654

    Article  CAS  PubMed  Google Scholar 

  39. Kidd AH, Chroboczek J, Cusack S, Ruigrok RW (1993) Adenovirus type 40 virions contain two distinct fibers. Virology 192:73–84

    Article  CAS  PubMed  Google Scholar 

  40. Favier AL, Schoehn G, Jaquinod M, Harsi C, Chroboczek J (2002) Structural studies of human enteric adenovirus type 41. Virology 293:75–85

    Article  CAS  PubMed  Google Scholar 

  41. Albinsson B, Kidd AH (1999) Adenovirus type 41 lacks an RGD alpha(v)-integrin binding motif on the penton base and undergoes delayed uptake in A549 cells. Virus Res 64:125–136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ashok K. Saluja and Dr. Selwyn M. Vickers for helpful discussions. This work was partly supported by NIH grants R01DK63615 and R01CA94084 (to Masato Yamamoto).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Yamamoto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamasaki, S., Miura, Y., Brown, E. et al. Development of a method for effective amplification of human adenovirus 40. Arch Virol 155, 1059–1068 (2010). https://doi.org/10.1007/s00705-010-0683-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0683-3

Keywords

Navigation