Skip to main content

Genomic and biological characterization of chiltepín yellow mosaic virus, a new tymovirus infecting Capsicum annuum var. aviculare in Mexico


The characterization of viruses infecting wild plants is a key step towards understanding the ecology of plant viruses. In this work, the complete genomic nucleotide sequence of a new tymovirus species infecting chiltepin, the wild ancestor of Capsicum annuum pepper crops, in Mexico was determined, and its host range has been explored. The genome of 6,517 nucleotides has the three open reading frames described for tymoviruses, putatively encoding an RNA-dependent RNA polymerase, a movement protein and a coat protein. The 5′ and 3′ untranslated regions have structures with typical signatures of the tymoviruses. Phylogenetic analyses revealed that this new virus is closely related to the other tymoviruses isolated from solanaceous plants. Its host range is mainly limited to solanaceous species, which notably include cultivated Capsicum species. In the latter, infection resulted in a severe reduction of growth, indicating the potential of this virus to be a significant crop pathogen. The name of chiltepin yellow mosaic virus (ChiYMV) is proposed for this new tymovirus.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Nuéz F, Gil-Ortega R, Costa J (1996) El cultivo de pimientos, chiles y ajies. Mundi Prensa, Madrid

    Google Scholar 

  2. 2.

    Hernández-Verdugo S, Luna-Reyes R, Oyama K (2001) Genetic structure and differentiation of wild and domesticated populations of Capsicum annuum (Solanaceae) from Mexico. Plant Syst Evol 226:129–142

    Article  Google Scholar 

  3. 3.

    Votava EJ, Nabham GP, Bosland PW (2002) Genetic diversity and similarity revealed via molecular analysis among and within an in situ population and ex situ accessions of chiltepin (Capsicum annuum var. glabriusculum). Conserv Genetics 3:123–129

    Article  CAS  Google Scholar 

  4. 4.

    Tewksbury JJ, Nabhan GP, Norman D, Suzán H, Tuxill J, Donovan J (1999) In situ conservation of wild chiles and their biotic associates. Conserv Biol 13:98–107

    Article  Google Scholar 

  5. 5.

    Torres-Pacheco I, Garzón-Tiznado JA, Brown JK, Becerra-Flora A, Rivera-Bustamante RF (1996) Detection and distribution of geminiviruses in Mexico and the southern United States. Phytopathology 86:1186–1192

    Article  CAS  Google Scholar 

  6. 6.

    Almaza JG, Maiti RK, Foroughbakhch PR, Cárdenas ML, Núñez-González MA, Moreno-Limón S, Hernández-Piñero JL, Valades MC (2001) Bromatología del chile piquín (Capsicum annuum L. var. aviculare (Dierb.) D. & E.). Resúmenes XV Congreso Mexicano de Botánica. Querétaro

  7. 7.

    Boukema RW (1980) Allelism of genes controlling resistance to TMV in Capsicum. Euphytica 29:433–439

    Article  Google Scholar 

  8. 8.

    Kyle MM, Palloix A (1997) Proposed revision of nomenclature for potyvirus resistance genes in Capsicum. Euphytica 97:183–188

    Article  Google Scholar 

  9. 9.

    Hernández-Verdugo S, Guevara-González RG, Rivera-Bustamente RF, Oyama K (2001) Screening wild plants of Capsicum annuum for resistance to pepper huasteco virus (PHV): presence of viral DNA and differentiation among populations. Euphytica 122:31–36

    Article  Google Scholar 

  10. 10.

    Méndez-Lozano J, Torres-Pacheco I, Fauquet CM, Rivera-Bustamante RF (2003) Interactions Between Geminiviruses in a naturally occurring mixture: Pepper huasteco virus and Pepper golden mosaic virus. Phytopathology 93:270–277

    Article  PubMed  Google Scholar 

  11. 11.

    Bozarth CS, Weiland JJ, Dreher TW (1992) Expression of ORF-69 of Turnip yellow mosaic virus is necessary for viral spread in plants. Virology 187:124–130

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Chen J, Li WX, Xie D, Peng JR, Ding SW (2004) Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microRNA in host gene expression. Plant Cell 16:1302–1313

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Ding S, Howe J, Keese P, Mackenzie A, Meek D, Osorio-Keese M, Skotnicki M, Srifah P, Torronen M, Gibbs A (1990) The tymobox, a sequence shared by most tymoviruses: its use in molecular studies of tymoviruses. Nucleic Acids Res 18:1181–1187

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Martelli GP, Sabanadzovic S, Abou-Ghanem Sabanadzovic N, Edwards MC, Dreher T (2002) The family Tymoviridae. Arch Virol 147:1837–1846

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Haenni AL, Dreher TW (2008) Tymoviruses. In: Mahy BWJ, van Regenmortel MHV (eds) Encyclopedia of virology, vol 5. Academic Press, London, pp 199–207

    Chapter  Google Scholar 

  16. 16.

    Briand JP, Jonard G, Guilley H, Richards K, Hirth L (1977) Nucleotide sequence (n = 159) of the amino-acid-accepting 3′-OH extremity of turnip-yellow-mosaic-virus RNA and the last portion of its coat-protein cistron. Eur J Biochem 72:453–463

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Hord M, Villalobos W, Macaya-Lizano AV, Rivera C (1997) Chayote mosaic, a new disease in Sechium edule caused by a tymovirus. Plant Dis 81:374–378

    Article  Google Scholar 

  18. 18.

    Sacristán S, Fraile A, Malpica JN, García-Arenal F (2005) An analysis of host adaptation and its relationship with virulence in Cucumber mosaic virus. Phytopathology 95:827–833

    Article  PubMed  Google Scholar 

  19. 19.

    Martin G, Keller W (1998) Tailing and 3′-end labelling of RNA with yeast poly(A) polymerase and various nucleotides. RNA 4:226–230

    PubMed  CAS  Google Scholar 

  20. 20.

    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Rambaut A (1996) Se-Al: sequence alignment editor.

  22. 22.

    Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Valverde RA (1990) Analysis of double-stranded RNA for plant virus diagnosis. Plant Dis 74:255–258

    Article  Google Scholar 

  24. 24.

    Lot H, Marrou J, Quiot JB, Esvan C (1972) Contribution à l’étude du virus de la mosaïque du concombre (CMV): Méthode de purification rapide du virus. Ann Phytopathol 4:25–38

    CAS  Google Scholar 

  25. 25.

    Hitchborn JH, Hills GJ (1965) The use of negative staining in the electron microscopy examination of plant viruses in crude extracts. Virology 27:528–540

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Bransom KL, Dreher TW (1994) Identification of the essential cysteine and hystidine residues of the Turnip yellow mosaic virus protease. Virology 187:148–154

    Article  Google Scholar 

  28. 28.

    Ranjith-Kumar CT, Gopinath K, Jacob ANK, Svrividhya V, Elango P, Savithri SH (1998) Genomic sequence of Physalis mottle virus and its evolutionary relationship with other tymoviruses. Arch Virol 143:1489–1500

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Koenig R, Pleij CWA, Lesemann D-E, Loss S, Vetten HJ (2005) Molecular characterization of isolates of Anagris vein yellowing virus, Plantago mottle virus and Scrophularia mottle virus—comparison of various approaches for tymovirus classification. Arch Virol 150:2325–2338

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Dreher TW, Goodwin JB (1998) Transfer RNA mimicry among tymoviral genomic RNAs ranges from highly efficient to vestigial. Nucleic Acids Res 26:4356–4364

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Jones RAC (2009) Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res 141:113–130

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Malmstrom CM, Stoner CJ, Brandenburg S, Newton LA (2006) Virus infection and grazing exert counteracting influences on survivorship of native bunchgrass seedling competing with invasive exotics. J Ecol 94:264–275

    Article  PubMed  Google Scholar 

  33. 33.

    Power AG, Mitchell CE (2004) Pathogen spillover in disease epidemics. Am Naturalist 164:S79–S89

    Article  Google Scholar 

  34. 34.

    Index of viruses—Tymoviridae (2009) In: ICTVdB—The Universal Virus Database. Columbia University, New York.

  35. 35.

    Alexandre VA, Duarte LML, Rivas EB, Chagas CM, Barradas MM, Koenig R (2000) Petunia vein banding virus: characterization of a new tymovirus from Petunia x hybrida. Plant Dis 84:739–742

    Article  Google Scholar 

  36. 36.

    Guy PL, Dale JL, Adena MA, Gibbs AJ (1984) A taxonomic study of the host range of tymoviruses. Plant Pathol 33:337–346

    Article  Google Scholar 

  37. 37.

    Bernal JJ, Jimenez I, Moreno M, Hord M, Rivera C, Koenig R, Rodríguez-Cerezo E (2000) Chayote mosaic virus, a new tymovirus infecting Cucurbitaceae. Phytopathology 90:1098–1104

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Stephan D, Siddiqua M, Hoang AT, Engelmann J, Winter S, Maiss E (2008) Complete nucleotide sequence and experimental host range of Okra mosaic virus. Virus Genes 36:231–240

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Rozanov MN, Koonin EV, Gorbalenya AE (1992) Conservation of the putative methyl-transferase domain: a hallmark of the ‘Sindbis-like’ supergroup of positive-strand RNA viruses. J Gen Virol 73:2129–2134

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Bransom KL, Wallace SE, Dreher DW (1996) Identification of the cleavage site recognised by the turnip yellow mosaic virus protease. Virology 217:404–406

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Rozanov MN, Drugeon G, Haenni A-L (1995) Papain-like proteinase of Turnip yellow mosaic virus: a prototype of a new viral proteinase group. Arch Virol 140:273–288

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Jakubiec A, Drugeon G, Camborde L, Jupin I (2007) Proteolitic processing of Turnip yellow mosaic virus replication proteins and functional impact on infectivity. J Virol 81:11402–11412

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Schirawski J, Voyatzakis A, Zaccomer B, Bernardi F, Haenni A (2000) Identification and functional analysis of the Turnip yellow mosaic virus subgenomic promoter. J Virol 74:11073–11080

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Hellendoorn K, Mihiels PJA, Biutenhuis R, Pleij CWA (1996) Protonable hairpins are conserved in the 5′-untranslated region of tymovirus RNAs. Nucleic Acids Res 24:4910–4917

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Hellendoorn K, Verlaan PWG, Pleij CWA (1997) A functional role for the conserved protonable hairpins in the 5′-untranslated region of Turnip yellow mosaic virus RNA. J Virol 71:8774–8779

    PubMed  CAS  Google Scholar 

  46. 46.

    Shin HI, Tzanetakis IE, Dreher TW, Cho TJ (2009) The 5′-UTR of Turnip yellow mosaic virus does not include a critical encapsidation signal. Virology 387:427–435

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Hellendoorn K, Mat AW, Gultyaev AP, Pleij CWA (1996) Secondary structure model of the coat protein gene of Turnip yellow mosaic virus RNA: long C-rich, single stranded regions. Virology 224:43–54

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Koenig R, Barends S, Gutyaev AP, Lesemann D-E, Vetten HJ, Loss S, Pleij CWA (2005) Nemesia ring necrosis virus: a new tymovirus with a genomic RNA having a histidylatable tobamovirus-like 3′ end. J Gen Virol 86:1827–1833

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    Gibbs A, Keese PK (1995) In search of the origins of viral genes. In: Gibbs A, Calisher CA, García-Arenal F (eds) Molecular basis of virus evolution. Cambridge University Press, Cambridge, pp 76–90

    Google Scholar 

  50. 50.

    Segwagwe AT, Putnam ML, Druffel KL, Pappu HR, Eastwell KC (2008) Molecular characterization of a new tymovirus from Diascia ornamental plants. Arch Virol 153:1495–1503

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Srifah P, Keese P, Weiller G, Gibbs A (1992) Comparisons of the genomic sequences of Erysimum latent virus and other tymoviruses: a search for the molecular basis of their host specificities. J Gen Virol 73:1437–1447

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Tzanetakis IE, Tsai C-H, Martin RR, Dreher TW (2009) A tymovirus with an atypical 3′-UTR illuminates the possibilities for 3′-UTR evolution. Virology 392:238–245

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Gibbs A (1999) Tymoviruses. In: Granoff A, Webster R (eds) Encyclopedia of virology, vol 3. Academic Press, London, pp 1850–1853

    Google Scholar 

  54. 54.

    Muthukumar V, Melcher U, Pierce M, Wiley GB, Roe BA, Palmer MW, Thapa V, Ali A, Ding T (2009) Non-cultivated plants of the Tallgrass Prairie Preserve of northeastern Oklahoma frequently contain virus-like sequences in particulate fractions. Virus Res 141:169–173

    Article  PubMed  CAS  Google Scholar 

  55. 55.

    Gibbs AJ (1980) A plant virus that partially protects its wild legume host against herbivores. Intervirol 13:42–47

    Article  CAS  Google Scholar 

Download references


This work was in part funded by grants “Interacciones entre virus y sus plantas huésped en poblaciones silvestres de tabaco y pimiento” (Programa de Cooperación Científica con Iberoamérica 1999, Ministerio de Educación y Cultura, Spain) and “Impacto de los patógenos en la conservación de especies amenazadas: aplicación a las poblaciones silvestres de chiltepín en México” (BIOCON05/101, Fundación BBVA, Spain).

Author information



Corresponding author

Correspondence to Fernando García-Arenal.

Additional information

I. Pagán and M. Betancourt contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1.

Predicted secondary structure of the 5′- and 3′-untranslated regions (UTR) of the Tula 20.5 and Tula 20.8 genomic RNA. A. Secondary structure of the 5′-UTR. The three hairpins present in this region (HP 1, HP 2, and HP 3) are indicated. The overlapping protein (OP) start codon is boxed. B. Secondary structure of the 3′-UTR. The tRNA-like structure and the three upstream stem-loops are indicated. The coat protein (CP) stop codon, and the anticodon for valine are highlighted in boxes. Secondary structures were obtained using UNAfold software ( (TIFF 66 kb)

Supplementary material 2 (DOC 16 kb)

Supplementary material 3 (DOC 38 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pagán, I., Betancourt, M., de Miguel, J. et al. Genomic and biological characterization of chiltepín yellow mosaic virus, a new tymovirus infecting Capsicum annuum var. aviculare in Mexico. Arch Virol 155, 675–684 (2010).

Download citation


  • Coat Protein
  • Pepper Plant
  • Chilli Pepper
  • Yellow Mosaic Virus
  • Capsicum Species