Skip to main content
Log in

Tula hantavirus NSs protein accumulates in the perinuclear area in infected and transfected cells

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The small RNA segment of some hantaviruses (family Bunyaviridae) encodes two proteins: the nucleocapsid protein and, in an overlapping reading frame, a non-structural (NSs) protein. The hantavirus NSs protein, like those of orthobunya- and phleboviruses, counteracts host innate immunity. Here, for the first time, the NSs protein of a hantavirus (Tula virus) has been observed in infected cells and shown to localize in the perinuclear area. Transiently expressed NSs protein showed similar localization, although the kinetics was slightly different, suggesting that to reach its proper location in the infected cell, the NSs protein does not have to cooperate with other viral proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Nichol ST, Beaty BJ, Elliott RM, Goldbach R, Plyusnin A, Schmaljohn CS, Tesh RB (2005) Bunyaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy. VIIIth report of the International Committee on Taxonomy of Viruses. Elsevier/Academic Press, Amsterdam, pp 695–716

    Google Scholar 

  2. Plyusnin A (2002) Genetics of hantaviruses: implications to taxonomy. Arch Virol 147:665–682

    Article  CAS  PubMed  Google Scholar 

  3. Mohamed M, McLees A, Elliott RM (2009) Viruses in the Anopheles A, Anopheles B and Tete serogroups in the Orthobunyavirus genus (family Bunyaviridae) do not encode an NSs protein. J Virol 83:7612–7618

    Article  CAS  PubMed  Google Scholar 

  4. Plyusnin A, Vapalahti O, Lankinen H, Lehväslaiho H, Apekina N, Myasnikov Y, Kallio-Kokko H, Henttonen H, Lundkvist Å, Brummer-Korvenkontio M, Gavrilovskaya I, Vaheri A (1994) Tula virus: a newly detected hantavirus carried by European common voles. J Virol 68:7833–7839

    CAS  PubMed  Google Scholar 

  5. Bowen MD, Kariwa H, Rollin PE, Peters CJ, Nichol ST (1995) Genetic characterization of a human isolate of Puumala hantavirus from France. Virus Res 38:279–289

    Article  CAS  PubMed  Google Scholar 

  6. Sironen T, Vaheri A, Plyusnin A (2001) Molecular evolution of Puumala hantavirus. J Virol 75:11803–11810

    Article  CAS  PubMed  Google Scholar 

  7. Jääskeläinen KM, Kaukinen P, Minskaya ES, Plyusnina A, Vapalahti O, Elliott RM, Weber F, Vaheri A, Plyusnin A (2007) Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-beta promoter. J Med Virol 79:1527–1536

    Article  PubMed  Google Scholar 

  8. Jääskeläinen KM, Plyusnina A, Lundkvist A, Vaheri A, Plyusnin A (2008) Tula hantavirus isolate with the full-length ORF for nonstructural protein NSs survives for more consequent passages in interferon-competent cells than the isolate having truncated NSs ORF. Virol J 5:3

    Article  PubMed  Google Scholar 

  9. Thomas D, Blakqori G, Wagner V, Banholzer M, Kessler N, Elliott RM, Haller O, Weber F (2004) Inhibition of RNA polymerase II phosphorylation by a viral interferon antagonist. J Biol Chem 279:31471–31477

    Article  CAS  PubMed  Google Scholar 

  10. Leonard VHJ, Kohl A, Hart TJ, Elliott RM (2006) Interaction of Bunyamwera orthobunyavirus NSs protein with Mediator protein MED8: a mechanism for inhibiting the interferon response. J Virol 80:9667–9675

    Article  CAS  PubMed  Google Scholar 

  11. Le May N, Dubaele S, De Santis LP, Billecocq A, Bouloy M, Egly JM (2004) TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell 116:541–550

    Article  CAS  PubMed  Google Scholar 

  12. Le May N, Mansuroglu Z, Leger P, Josse T, Blot G, Billecocq A, Flick R, Jacob Y, Bonnefoy E, Bouloy M (2008) A SAP30 complex inhibits IFN-beta expression in Rift Valley fever virus infected cells. PloS Pathog 4:e13. doi:10.137/journal.ppat.0040013

    Article  PubMed  Google Scholar 

  13. Plyusnin A, Morzunov S (2001) Virus evolution and genetic diversity of hantaviruses and their rodent hosts. In: Schmaljohn C, Nichol SN (eds) Hantaviruses. Curr Top Microbiol Immunol 256:47–75

  14. Habjan M, Andersson I, Klingström J, Shumann M, Martin A, Zimmermann P, Wagner V, Piclmair A, Schneider U, Muhlberger E, Mirazimi A, Weber F (2008) Processing of genome 5′ termini as a strategy of negative-stranded RNA viruses to avoid RIG-I-dependent interferon induction. PLoS ONE 3:e2032

    Article  PubMed  Google Scholar 

  15. Alff PJ, Gavrilovskaya IN, Gorbunova E, Endriss K, Chong Y, Geimonen E, Sen N, Reich NC, Mackow ER (2006) The pathogenic NY-1 hantavirus G1 cytoplasmic tail inhibits RIG-I- and TBK-1-directed interferon response. J Virol 80:9676–9686

    Article  CAS  PubMed  Google Scholar 

  16. Yadani FZ, Kohl A, Prehaud C, Billecocq A, Bouloy M (1999) The carboxy-terminal acidic domain of Rift Valley fever virus NSs protein is essential for the formation of filamentous structures but not for the nuclear localization of the protein. J Virol 73:5018–5025

    CAS  PubMed  Google Scholar 

  17. Simons JF, Persson R, Pettersson RF (1992) Association of the nonstructural protein NSs of Uukuniemi virus with the 40S ribosomal subunit. J Virol 66:4233–4441

    CAS  PubMed  Google Scholar 

  18. Vapalahti O, Kallio-Kokko H, Närvänen A, Julkunen I, Lundkvist A, Plyusnin A, Lehväslaiho H, Brummer-Korvenkontio M, Vaheri A, Lankinen H (1995) Human B-cell epitopes of Puumala virus nucleocapsid protein, the major antigen in early serological response. J Med Virol 46:293–303

    Article  CAS  PubMed  Google Scholar 

  19. Tan JL, Ueda N, Mercer AA, Fleming SB (2009) Investigation of orf virus structure and morphogenesis using recombinants expressing FLAG-tagged envelope structural proteins: evidence for wrapped virus particles and egress from infected cells. J Gen Virol 90:614–625

    Article  CAS  PubMed  Google Scholar 

  20. Fried H, Kutay U (2003) Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci 60:1659–1688

    Article  CAS  PubMed  Google Scholar 

  21. Elad N, Maimon T, Frenkiel-Krispin D, Lim RY, Medalia O (2009) Structural analysis of the nuclear pore complex by integrated approaches. Curr Opin Struct Biol 19:226–232

    Article  CAS  PubMed  Google Scholar 

  22. Habjan M, Pichlmair A, Elliott RM, Overby AK, Glatter T, Gstaiger M, Superti-Furga G, Unger H, Weber F (2009) NSs protein of rift valley fever virus induces specific degradation of the double-stranded RNA-dependent protein kinase. J Virol 83:4365–4375

    Article  CAS  PubMed  Google Scholar 

  23. Panganiban T, Mir MA (2009) Bunyavirus N. eIF4F surrogate and cap-guardian. Cell Cycle 8:1332–1337

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ilkka Julkunen for providing the FLAG-expressing plasmid. Tuomas Rönnberg is thanked for assistance in transfection experiments. This work was supported by the University of Helsinki (the Young Scientist’s grant for KMJ), The Academy of Finland and Sigrid Juselius Foundation, Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jussi Oskari Virtanen.

Additional information

J. O. Virtanen and K. M. Jääskeläinen contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virtanen, J.O., Jääskeläinen, K.M., Djupsjöbacka, J. et al. Tula hantavirus NSs protein accumulates in the perinuclear area in infected and transfected cells. Arch Virol 155, 117–121 (2010). https://doi.org/10.1007/s00705-009-0546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-009-0546-y

Keywords

Navigation