Skip to main content
Log in

Sequence diversity of readthrough proteins of Soybean dwarf virus isolates from the Midwestern United States

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The amino acid sequence diversity of readthrough proteins (RTPs) of 24 dwarfing isolates of Soybean dwarf virus (SbDV) from Wisconsin and Illinois was analyzed. The RTP, a minor component of viral capsids, has a significant role in specificity of aphid transmission of luteovirids. Among the isolates, nucleotide sequence identities ranged from 95 to 100%. The predicted amino acid sequences differed at 56 amino acid positions in the 54 kDa RTD compared to only five positions in the 22 kDa CP. Phylogenetic analysis of both amino acid and nucleotide sequences showed three distinct clusters of SbDV isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Abraham AD, Menzel W, Vetten HJ, Saucke H (2007) First report of Soybean dwarf virus (Genus luteovirus) infecting faba bean and clover in Germany. Plant Dis 91:1059

    Article  Google Scholar 

  2. Ashby JW, Kyriakou A (1982) Purification and properties of subterranean clover red leaf virus. N Z J Agric Res 25:607–612

    Google Scholar 

  3. Banba H, Tanimura Y, Matuskawa I (1986) Breeding for resistance to soybean dwarf virus in soybeans. Trop Agric Res Ser 19:236–246

    Google Scholar 

  4. Damsteegt VD, Hewings AD, Sindermann AB (1990) Soybean dwarf virus: experimental host range, soybean germ plasm reactions, and assessment of potential threat to U.S. soybean production. Plant Dis 74:992–995

    Article  Google Scholar 

  5. Damsteegt VD, Stone A, Schneider W, Sherman D, Gildow F, Luster D (2005) The soybean aphid, Aphis glycines, a new vector of endemic dwarfing and yellowing isolates of Soybean dwarf luteovirus. Phytopathology 95:S22

    Google Scholar 

  6. Damsteegt VD, Stone AL, Russo AJ, Luster DG, Gildow FE, Smith OP (1999) Identification, characterization, and relatedness of luteovirus isolates from forage legumes. Phytopathology 89:374–379

    Article  PubMed  CAS  Google Scholar 

  7. Fayad A, Tolin SA, Baldwin M (2000) Natural infection of soybean with a soybean dwarf-like virus in Virginia. Phytopathology 90:S132

    Google Scholar 

  8. Gildow FE, Damsteegt VD, Stone AL, Smith OP, Gray SM (2000) Virus–vector cell interactions regulating transmission specificity of soybean dwarf luteoviruses. J Phytopathol 148:333–342

    Google Scholar 

  9. Gray S, Gildow FE (2003) Luteovirus–aphid interactions. Annu Rev Phytopathol 41:539–566

    Article  PubMed  CAS  Google Scholar 

  10. Harrison B, Steinlage TA, Domier LL, D’Arcy CJ (2005) Incidence of Soybean dwarf virus and identification of potential vectors in Illinois. Plant Dis 89:28–32

    Article  Google Scholar 

  11. Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci 8:189–191

    PubMed  CAS  Google Scholar 

  12. Honda K (2001) Aphids and their transmission of viruses on soybeans in Japan. Agrochem Jpn 79:2–7

    Google Scholar 

  13. Honda K, Kanematsu S, Mikoshiba Y (1999) Dwarfing strain of soybean dwarf luteovirus transmitted by Nearctaphis bakeri and Acyrthosiphon pisum. Ann Phytopathol Soc Jpn 65:387

    Article  Google Scholar 

  14. Johnstone GR, Ashby JW, Gibbs AJ, Duffus JE, Thottappilly G, Fletcher JD (1984) The host ranges, classification and identification of eight persistent aphid-transmitted viruses causing diseases in legumes. Neth J Plant Pathol 90:225–245

    Article  Google Scholar 

  15. Johnstone GR, Liu H-Y, Duffus JE (1984) First report of a subterranean clover red leaf-like virus in the Western Hemisphere. Phytopathology 74:795

    Google Scholar 

  16. Kellock AW (1971) Red leaf virus—a newly recognized virus disease of subterranean clover. (T. subterraneum L.). Aust J Agric Res 22:615–624

    Article  Google Scholar 

  17. Makkouk KM, Damsteegt V, Johnstone GR, Katul L, Lesemann DE, Kumari SG (1997) Identification and some properties of soybean dwarf luteovirus affecting lentil in Syria. Phytopathol Mediterr 3:135–144

    Google Scholar 

  18. Miller WA, Dineshkumar SP, Paul CP (1995) Luteovirus gene expression. Crit Rev Plant Sci 14:179–211

    CAS  Google Scholar 

  19. Najar A, Kumari SG, Makkouk KM, Daaloul A (2003) A survey of viruses affecting faba bean (Vicia faba) in Tunisia includes first record of Soybean dwarf virus. Plant Dis 87:1151

    Article  Google Scholar 

  20. Nicholas KB, Nicholas HBJ, Deerfield DWI (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW News 4:14

    Google Scholar 

  21. Peter KA, Liang D, Palukaitis P, Gray SM (2008) Small deletions in the potato leafroll virus readthrough protein affect particle morphology, aphid transmission, virus movement and accumulation. J Gen Virol 89:2037–2045

    Article  PubMed  CAS  Google Scholar 

  22. Phibbs A, Barta A, Domier LL (2004) First report of Soybean dwarf virus on soybean in Wisconsin. Plant Dis 88:1285

    Article  Google Scholar 

  23. Ragsdale DW, Voegtlin DJ, O’Neil RJ (2004) Soybean aphid biology in North America. Ann Entomol Soc Am 97:204–208

    Article  Google Scholar 

  24. Rathjen JP, Karageorgos LE, Habili N, Waterhouse PM, Symons RH (1994) Soybean dwarf luteovirus contains the third variant genome type in the luteovirus group. Virology 198:671–679

    Article  PubMed  CAS  Google Scholar 

  25. Rossel HW, Thottapilly G (1982) Soybean dwarf, a potentially disastrous virus disease of soybean in Nigeria. IITA Res Briefs 3:3–5

    Google Scholar 

  26. Stern A, Doron-Faigenboim A, Erez E, Martz E, Bacharach E, Pupko T (2007) Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach. Nucleic Acids Res 35:W506–W511

    Article  PubMed  Google Scholar 

  27. Tacke E, Prufer D, Salamini F, Rohde W (1990) Characterization of a potato leafroll luteovirus subgenomic RNA: differential expression by internal translation initiation and UAG suppression. J Gen Virol 71(Pt 10):2265–2272

    Article  PubMed  CAS  Google Scholar 

  28. Tamada T (1970) Aphid transmission and host range of soybean dwarf virus. Ann Phytopathol Soc Jpn 36:266–274

    Article  Google Scholar 

  29. Tamada T (1975) Studies on the soybean dwarf disease. Hokkaido Prefectural Agricultural Experiment Stations, Hokkaido

    Google Scholar 

  30. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  31. Terauchi H, Honda K, Yamagishi N, Kanematsu S, Ishiguro K, Hidaka S (2003) The N-terminal region of the readthrough domain is closely related to aphid vector specificity of Soybean dwarf virus. Phytopathology 93:1560–1564

    Article  PubMed  CAS  Google Scholar 

  32. Terauchi H, Kanematsu S, Honda K, Mikoshiba Y, Ishiguro K, Hidaka S (2001) Comparison of complete nucleotide sequences of genomic RNAs of four Soybean dwarf virus strains that differ in their vector specificity and symptom production. Arch Virol 146:1885–1898

    Article  PubMed  CAS  Google Scholar 

  33. Thekkeveetil T, Hobbs HA, Wang Y, Kridelbaugh D, Donnelly J, Hartman GL, Domier LL (2007) First report of Soybean dwarf virus in soybean in northern Illinois. Plant Dis 91:1686

    Article  Google Scholar 

  34. Wilson J, Close RC (1973) Subterranean clover red leaf virus and other legume viruses in Canterbury. N Z J Agric Res 16:305–310

    Google Scholar 

Download references

Acknowledgments

We thank A. Phibbs, and A. Barta for providing SbDV-infected Wisconsin soybean samples. This study was supported by funding from United States Department of Agriculture-Agricultural Research Service and the North Central Soybean Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Domier.

Additional information

The GenBank accession numbers of the sequence reported in this paper are EU095846, EU095847, and EU419570–EU419584.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thekke Veetil, T., Hobbs, H.A. & Domier, L.L. Sequence diversity of readthrough proteins of Soybean dwarf virus isolates from the Midwestern United States. Arch Virol 154, 861–866 (2009). https://doi.org/10.1007/s00705-009-0370-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-009-0370-4

Keywords

Navigation