Skip to main content
Log in

A longitudinal cohort study in calves evaluated for rotavirus infections from 1 to 12 months of age by sequential serological assays

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Using an immunocytochemical staining assay involving six different recombinant baculoviruses with each expressing one of the major bovine rotavirus VP7 (G6, G8 and G10) and VP4 (P6[1], P7[5] and P8[11]) serotypes, we analyzed IgG antibody responses to individual proteins in archival serum samples collected from 31 calves monthly from 1 to 12 months of age during 1974–1975 in Higley, Arizona. Seroresponses to VP7 and VP4, as determined by a fourfold or greater antibody response, were not always elicited concurrently following infection: in some calves, (1) seroresponses to VP7 were detected earlier than to VP4 or vice versa; and (2) a subsequent second seroresponse was detected for VP7 or VP4 only. In addition, a second infection was more likely to be caused by different G and/or P types. Analyses of serum samples showed that the most frequent G–P combination was G8P6[1], followed by G8P7[5], G8P8[11] and G6P6[1].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acres SD, Babiuk LA (1978) Studies on rotaviral antibody in bovine serum and lacteal secretions, using radioimmunoassay. J Am Vet Med Assoc 173:555–559

    PubMed  CAS  Google Scholar 

  2. Babiuk LA, Acres SD, Rouse BT (1977) Solid-phase radioimmunoassay for detecting bovine (neonatal calf diarrhea) rotavirus antibody. J Clin Microbiol 6:10–15

    PubMed  Google Scholar 

  3. Barreiros MA, Alfieri AF, Medici KC et al (2004) G and P genotypes of group A rotavirus from diarrhoeic calves born to cows vaccinated against the NCDV (P[1], G6) rotavirus strain. J Vet Med B Infect Dis Vet Public Health 51:104–109

    Article  PubMed  CAS  Google Scholar 

  4. Besser TE, Gay CC, McGuire TC et al (1988) Passive immunity to bovine rotavirus infection associated with transfer of serum antibody into the intestinal lumen. J Virol 62:2238–2242

    PubMed  CAS  Google Scholar 

  5. Besser TE, McGuire TC, Gay CC et al (1988) Transfer of functional immunoglobulin G (IgG) antibody into the gastrointestinal tract accounts for IgG clearance in calves. J Virol 62:2234–2237

    PubMed  CAS  Google Scholar 

  6. Bridger JC, Woode GN (1975) Neonatal calf diarrhoea: identification of a reovirus-like (rotavirus) agent in faeces by immunofluorescence and immune electron microscopy. Br Vet J 131:528–535

    PubMed  CAS  Google Scholar 

  7. Bridger JC, Brown JF (1984) Antigenic and pathogenic relationships of three bovine rotaviruses and a porcine rotavirus. J Gen Virol 65(Pt 7):1151–1158

    Article  PubMed  Google Scholar 

  8. Bridger JC, Oldham G (1987) Avirulent rotavirus infections protect calves from disease with and without inducing high levels of neutralizing antibody. J Gen Virol 68(Pt 9):2311–2317

    Article  PubMed  CAS  Google Scholar 

  9. Brussow H, Walther I, Fryder V et al (1988) Cross-neutralizing antibodies induced by single serotype vaccination of cows with rotavirus. J Gen Virol 69(Pt 7):1647–1658

    Article  PubMed  Google Scholar 

  10. Brussow H, Eichhorn W, Rohwedder A et al (1991) Cattle develop neutralizing antibodies to rotavirus serotypes which could not be isolated from faeces of symptomatic calves. J Gen Virol 72(Pt 7):1559–1567

    Article  PubMed  Google Scholar 

  11. Chang KO, Parwani AV, Saif LJ (1996) The characterization of VP7 (G type) and VP4 (P type) genes of bovine group A rotaviruses from field samples using RT-PCR and RFLP analysis. Arch Virol 141:1727–1739

    Article  PubMed  CAS  Google Scholar 

  12. Coulson BS (1993) Typing of human rotavirus VP4 by an enzyme immunoassay using monoclonal antibodies. J Clin Microbiol 31:1–8

    PubMed  CAS  Google Scholar 

  13. Coulson BS (1996) VP4 and VP7 typing using monoclonal antibodies. Arch Virol Suppl 12:113–118

    PubMed  CAS  Google Scholar 

  14. Estes MK, Kapikian AZ (2007) Rotaviruses. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus EE (eds) Fields virology, 5th edn. Lippincott, Philadelphia, pp 1917–1974

    Google Scholar 

  15. Falcone E, Tarantino M, Di Trani L et al (1999) Determination of bovine rotavirus G and P serotypes in Italy by PCR. J Clin Microbiol 37:3879–3882

    PubMed  CAS  Google Scholar 

  16. Fernandez FM, Conner ME, Hodgins DC et al (1998) Passive immunity to bovine rotavirus in newborn calves fed colostrum supplements from cows immunized with recombinant SA11 rotavirus core-like particle (CLP) or virus-like particle (VLP) vaccines. Vaccine 16:507–516

    Article  PubMed  CAS  Google Scholar 

  17. Fodha I, Boumaiza A, Chouikha A et al (2005) Detection of group a rotavirus strains circulating in calves in Tunisia. J Vet Med B Infect Dis Vet Public Health 52:49–50

    Article  PubMed  CAS  Google Scholar 

  18. Fukai K, Sakai T, Kamata H (1998) Distribution of G serotypes and P genotypes of bovine group A rotavirus isolated in Japan. Aust Vet J 76:418–422

    Article  PubMed  CAS  Google Scholar 

  19. Fukai K, Sakai T, Hirose M et al (1999) Prevalence of calf diarrhea caused by bovine group A rotavirus carrying G serotype 8 specificity. Vet Microbiol 66:301–311

    Article  PubMed  CAS  Google Scholar 

  20. Fukai K, Maeda Y, Fujimoto K et al (2002) Changes in the prevalence of rotavirus G and P types in diarrheic calves from the Kagoshima prefecture in Japan. Vet Microbiol 86:343–349

    Article  PubMed  CAS  Google Scholar 

  21. Fukai K, Saito T, Inoue K et al (2004) Molecular characterization of novel P[14], G8 bovine group A rotavirus, Sun9, isolated in Japan. Virus Res 105:101–106

    Article  PubMed  CAS  Google Scholar 

  22. Fukai K, Takahashi T, Tajima K et al (2007) Molecular characterization of a novel bovine group A rotavirus. Vet Microbiol 123:217–224

    Article  PubMed  CAS  Google Scholar 

  23. Ganaba R, Belanger D, Dea S et al (1995) A seroepidemiological study of the importance in cow–calf pairs of respiratory and enteric viruses in beef operations from northwestern Quebec. Can J Vet Res 59:26–33

    PubMed  CAS  Google Scholar 

  24. Garaicoechea L, Bok K, Jones LR et al (2006) Molecular characterization of bovine rotavirus circulating in beef and dairy herds in Argentina during a 10-year-period (1994–2003). Vet Microbiol 118:1–11

    Article  PubMed  CAS  Google Scholar 

  25. Glass RI, Parashar UD, Bresee JS et al (2006) Rotavirus vaccines: current prospects and future challenges. Lancet 368:323–332

    Article  PubMed  CAS  Google Scholar 

  26. Gorrell RJ, Bishop RF (1999) Homotypic and heterotypic serum neutralizing antibody response to rotavirus proteins following natural primary infection and reinfection in children. J Med Virol 57:204–211

    Article  PubMed  CAS  Google Scholar 

  27. Gouvea V, Santos N, Timenetsky Mdo C (1994) VP4 typing of bovine and porcine group A rotaviruses by PCR. J Clin Microbiol 32:1333–1337

    PubMed  CAS  Google Scholar 

  28. Gouvea V, Santos N, Timenetsky Mdo C (1994) Identification of bovine and porcine rotavirus G types by PCR. J Clin Microbiol 32:1338–1340

    PubMed  CAS  Google Scholar 

  29. Hasegawa A, Inouye S, Matsuno S et al (1984) Isolation of human rotaviruses with a distinct RNA electrophoretic pattern from Indonesia. Microbiol Immunol 28:719–722

    PubMed  CAS  Google Scholar 

  30. Hodgins DC, Kang SY, deArriba L et al (1999) Effects of maternal antibodies on protection and development of antibody responses to human rotavirus in gnotobiotic pigs. J Virol 73:186–197

    PubMed  CAS  Google Scholar 

  31. Hoshino Y, Jones RW, Ross J et al (2003) Construction and characterization of rhesus monkey rotavirus (MMU18006)- or bovine rotavirus (UK)-based serotype G5, G8, G9 or G10 single VP7 gene substitution reassortant candidate vaccines. Vaccine 21:3003–3010

    Article  PubMed  CAS  Google Scholar 

  32. Hussein HA, Parwani AV, Rosen BI et al (1993) Detection of rotavirus serotypes G1, G2, G3, and G11 in feces of diarrheic calves by using polymerase chain reaction-derived cDNA probes. J Clin Microbiol 31:2491–2496

    PubMed  CAS  Google Scholar 

  33. Ishida S, Feng N, Tang B et al (1996) Quantification of systemic and local immune responses to individual rotavirus proteins during rotavirus infection in mice. J Clin Microbiol 34:1694–1700

    PubMed  CAS  Google Scholar 

  34. Ishida SI, Feng N, Gilbert JM et al (1997) Immune responses to individual rotavirus proteins following heterologous and homologous rotavirus infection in mice. J Infect Dis 175:1317–1323

    Article  PubMed  CAS  Google Scholar 

  35. Ishizaki H, Sakai T, Shirahata T et al (1996) The distribution of G and P types within isolates of bovine rotavirus in Japan. Vet Microbiol 48:367–372

    Article  PubMed  CAS  Google Scholar 

  36. Kapikian AZ, Cline WL, Kim HW et al (1976) Antigenic relationships among five reovirus-like (RVL) agents by complement fixation (CF) and development of new substitute CF antigens for the human RVL agent of infantile gastroenteritis. Proc Soc Exp Biol Med 152:535–539

    PubMed  CAS  Google Scholar 

  37. Kapikian AZ, Simonsen L, Vesikari T et al (2005) A hexavalent human rotavirus–bovine rotavirus (UK) reassortant vaccine designed for use in developing countries and delivered in a schedule with the potential to eliminate the risk of intussusception. J Infect Dis 192(Suppl 1):S22–S29

    Article  PubMed  Google Scholar 

  38. Kapikian AZ, Hoshino Y (2007) To serotype or not to serotype: that is still the question. J Infect Dis 195:611–614

    Article  PubMed  Google Scholar 

  39. Kim Y, Nielsen PR, Hodgins D et al (2002) Lactogenic antibody responses in cows vaccinated with recombinant bovine rotavirus-like particles (VLPs) of two serotypes or inactivated bovine rotavirus vaccines. Vaccine 20:1248–1258

    Article  PubMed  CAS  Google Scholar 

  40. Kohara J, Tsunemitsu H (2000) Correlation between maternal serum antibodies and protection against bovine rotavirus diarrhea in calves. J Vet Med Sci 62:219–221

    Article  PubMed  CAS  Google Scholar 

  41. Lu W, Duhamel GE, Hoshino Y et al (1995) Characterization of the bovine group A rotavirus strain neonatal calf diarrhea virus-Cody (NCDV-Cody). J Clin Microbiol 33:990–994

    PubMed  CAS  Google Scholar 

  42. Martella V, Ciarlet M, Banyai K et al (2007) Identification of group A porcine rotavirus strains bearing a novel VP4 (P) genotype in Italian swine herds. J Clin Microbiol 45:577–580

    Article  PubMed  CAS  Google Scholar 

  43. Matsuno S, Hasegawa A, Mukoyama A et al (1985) A candidate for a new serotype of human rotavirus. J Virol 54:623–624

    PubMed  CAS  Google Scholar 

  44. Mebus CA, Kono M, Underdahl NR et al (1971) Cell culture propagation of neonatal calf diarrhea (scours) virus. Can Vet J 12:69–72

    PubMed  CAS  Google Scholar 

  45. Midthun K, Greenberg HB, Hoshino Y et al (1985) Reassortant rotaviruses as potential live rotavirus vaccine candidates. J Virol 53:949–954

    PubMed  CAS  Google Scholar 

  46. Midthun K, Hoshino Y, Kapikian AZ et al (1986) Single gene substitution rotavirus reassortants containing the major neutralization protein (VP7) of human rotavirus serotype 4. J Clin Microbiol 24:822–826

    PubMed  CAS  Google Scholar 

  47. Ojeh CK, Snodgrass DR, Herring AJ (1984) Evidence for serotypic variation among bovine rotaviruses. Arch Virol 79:161–171

    Article  PubMed  CAS  Google Scholar 

  48. Ojeh CK, Tsunemitsu H, Simkins RA et al (1992) Development of a biotin–streptavidin-enhanced enzyme-linked immunosorbent assay which uses monoclonal antibodies for detection of group C rotaviruses. J Clin Microbiol 30:1667–1673

    PubMed  CAS  Google Scholar 

  49. Okada N, Matsumoto Y (2002) Bovine rotavirus G and P types and sequence analysis of the VP7 gene of two G8 bovine rotaviruses from Japan. Vet Microbiol 84:297–305

    Article  PubMed  CAS  Google Scholar 

  50. Padilla-Noriega L, Werner-Eckert R, Mackow ER et al (1993) Serologic analysis of human rotavirus serotypes P1A and P2 by using monoclonal antibodies. J Clin Microbiol 31:622–628

    PubMed  CAS  Google Scholar 

  51. Parreno V, Hodgins DC, de Arriba L et al (1999) Serum and intestinal isotype antibody responses to Wa human rotavirus in gnotobiotic pigs are modulated by maternal antibodies. J Gen Virol 80(Pt 6):1417–1428

    PubMed  CAS  Google Scholar 

  52. Parwani AV, Hussein HA, Rosen BI et al (1993) Characterization of field strains of group A bovine rotaviruses by using polymerase chain reaction-generated G and P type-specific cDNA probes. J Clin Microbiol 31:2010–2015

    PubMed  CAS  Google Scholar 

  53. Rao CD, Gowda K, Reddy BS (2000) Sequence analysis of VP4 and VP7 genes of nontypeable strains identifies a new pair of outer capsid proteins representing novel P and G genotypes in bovine rotaviruses. Virology 276:104–113

    Article  PubMed  CAS  Google Scholar 

  54. Reidy N, Lennon G, Fanning S et al (2006) Molecular characterisation and analysis of bovine rotavirus strains circulating in Ireland 2002–2004. Vet Microbiol 117:242–247

    Article  PubMed  CAS  Google Scholar 

  55. Ruiz-Palacios GM, Perez-Schael I, Velazquez R et al (2006) Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med 354:11–22

    Article  PubMed  CAS  Google Scholar 

  56. Saif LJ, Redman DR, Smith KL et al (1983) Passive immunity to bovine rotavirus in newborn calves fed colostrum supplements from immunized or nonimmunized cows. Infect Immun 41:1118–1131

    PubMed  CAS  Google Scholar 

  57. Saif LJ, Smith KL, Landmeier BJ et al (1984) Immune response of pregnant cows to bovine rotavirus immunization. Am J Vet Res 45:49–58

    PubMed  CAS  Google Scholar 

  58. Saif LJ, Rosen BI, Parwani AV (1994) Animal Rotaviruses. In: Kapikian AZ (ed) Viral infections of the gastrointestinal tract. Marcel Dekker, New York, pp 279–368

    Google Scholar 

  59. Santos N, Hoshino Y (2005) Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev Med Virol 15:29–56

    Article  PubMed  Google Scholar 

  60. Small C, Barro M, Brown TL et al (2007) Genome heterogeneity of SA11 rotavirus due to reassortment with “O” agent. Virology 359:415–424

    Article  PubMed  CAS  Google Scholar 

  61. Snodgrass DR, Ojeh CK, Campbell I et al (1984) Bovine rotavirus serotypes and their significance for immunization. J Clin Microbiol 20:342–346

    PubMed  CAS  Google Scholar 

  62. Snodgrass DR, Fitzgerald T, Campbell I et al (1990) Rotavirus serotypes 6 and 10 predominate in cattle. J Clin Microbiol 28:504–507

    PubMed  CAS  Google Scholar 

  63. Snodgrass DR, Fitzgerald TA, Campbell I et al (1991) Homotypic and heterotypic serological responses to rotavirus neutralization epitopes in immunologically naive and experienced animals. J Clin Microbiol 29:2668–2672

    PubMed  CAS  Google Scholar 

  64. Suzuki Y, Sanekata T, Sato M et al (1993) Relative frequencies of G (VP7) and P (VP4) serotypes determined by polymerase chain reaction assays among Japanese bovine rotaviruses isolated in cell culture. J Clin Microbiol 31:3046–3049

    PubMed  CAS  Google Scholar 

  65. Taniguchi K, Urasawa T, Pongsuwanna Y et al (1991) Molecular and antigenic analyses of serotypes 8 and 10 of bovine rotaviruses in Thailand. J Gen Virol 72(Pt 12):2929–2937

    Article  PubMed  CAS  Google Scholar 

  66. Theil KW, McCloskey CM (1995) Rotavirus shedding in feces of gnotobiotic calves orally inoculated with a commercial rotavirus–coronavirus vaccine. J Vet Diagn Invest 7:427–432

    Article  PubMed  CAS  Google Scholar 

  67. Velazquez FR, Matson DO, Calva JJ et al (1996) Rotavirus infections in infants as protection against subsequent infections. N Engl J Med 335:1022–1028

    Article  PubMed  CAS  Google Scholar 

  68. Vesikari T, Isolauri E, Delem A et al (1983) Immunogenicity and safety of live oral attenuated bovine rotavirus vaccine strain RIT 4237 in adults and young children. Lancet 2:807–811

    Article  PubMed  CAS  Google Scholar 

  69. Vesikari T (1993) Clinical trials of live oral rotavirus vaccines: the Finnish experience. Vaccine 11:255–261

    Article  PubMed  CAS  Google Scholar 

  70. Woode GN, Kelso NE, Simpson TF et al (1983) Antigenic relationships among some bovine rotaviruses: serum neutralization and cross-protection in gnotobiotic calves. J Clin Microbiol 18:358–364

    PubMed  CAS  Google Scholar 

  71. Woode GN, Zheng SL, Rosen BI et al (1987) Protection between different serotypes of bovine rotavirus in gnotobiotic calves: specificity of serum antibody and coproantibody responses. J Clin Microbiol 25:1052–1058

    PubMed  CAS  Google Scholar 

  72. Wyatt RG, Mebus CA, Yolken RH et al (1979) Rotaviral immunity in gnotobiotic calves: heterologous resistance to human virus induced by bovine virus. Science 203:548–550

    Article  PubMed  CAS  Google Scholar 

  73. Wyatt RG, Kapikian AZ, Mebus CA (1983) Induction of cross-reactive serum neutralizing antibody to human rotavirus in calves after in utero administration of bovine rotavirus. J Clin Microbiol 18:505–508

    PubMed  CAS  Google Scholar 

  74. Xu Z, Hardy ME, Williams JD et al (1993) Immunodominant neutralizing antigens depend on the virus strain during a primary immune response in calves to bovine rotaviruses. Vet Microbiol 35:33–43

    Article  PubMed  CAS  Google Scholar 

  75. Yuan L, Honma S, Ishida S et al (2004) Species-specific but not genotype-specific primary and secondary isotype-specific NSP4 antibody responses in gnotobiotic calves and piglets infected with homologous host bovine (NSP4[A]) or porcine (NSP4[B]) rotavirus. Virology 330:92–104

    Article  PubMed  CAS  Google Scholar 

  76. Yuan L, Ishida S, Honma S et al (2004) Homotypic and heterotypic serum isotype-specific antibody responses to rotavirus nonstructural protein 4 and viral protein (VP) 4, VP6, and VP7 in infants who received selected live oral rotavirus vaccines. J Infect Dis 189:1833–1845

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Intramural Research Program of the National Institute of Allergy and Infectious Disease, National Institutes of Health, USA. There is no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasutaka Hoshino.

Additional information

Francis R. Abinanti: Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, D., Igboeli, B., Yuan, L. et al. A longitudinal cohort study in calves evaluated for rotavirus infections from 1 to 12 months of age by sequential serological assays. Arch Virol 154, 755–763 (2009). https://doi.org/10.1007/s00705-009-0331-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-009-0331-y

Keywords

Navigation