Skip to main content

Evidence for multiple intraspecific recombinants in natural populations of Watermelon mosaic virus (WMV, Potyvirus)

Abstract

The full-length sequences of 13 isolates of Watermelon mosaic virus (WMV, genus Potyvirus) belonging to the three main molecular groups defined at the capsid level were obtained and compared to 4 sequences available in databases. Many isolates presented evidence for intraspecific recombination, particularly between molecular groups 1 and 2. Most isolates had different recombination breakpoints suggestive of multiple independent recombination events. The breakpoints were for the most part located between the C-terminal half of the HC-Pro coding region and the N-terminal part of the CI coding region. There was no evidence for positive selection in the WMV genome.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ali A, Natsuaki T, Okuda S (2006) The complete nucleotide sequence of a Pakistani isolate of Watermelon mosaic virus provides further insights into the taxonomic status in the Bean common mosaic virus subgroup. Virus Genes 32:307–311

    PubMed  Article  CAS  Google Scholar 

  2. Chadoeuf J, Brix A, Pierret A, Allard D (2000) Testing local dependences on images. J Microscopy 200:32–41

    Article  Google Scholar 

  3. Chare ER, Holmes EC (2006) A phylogenetic survey of recombination frequency in plant RNA viruses. Arch Virol 151:933–946

    PubMed  Article  CAS  Google Scholar 

  4. Chen J, Zheng H-Y, Lin L, Adams MJ, Antinow JF, Zhao M-F, Shang Y-F, Chen J-P (2004) A virus related to Soybean mosaic virus from Pinellia ternata in China and its comparison with local soybean SMV isolates. Arch Virol 149:349–363

    PubMed  Article  CAS  Google Scholar 

  5. Desbiez C, Lecoq H (2004) The nucleotide sequence of Watermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5′ part of the genome. Arch Virol 149:1619–1632

    PubMed  Article  CAS  Google Scholar 

  6. Desbiez C, Costa C, Wipf-Scheibel C, Girard M, Lecoq H (2007) Serological and molecular variability of Watermelon mosaic virus (genus Potyvirus). Arch Virol 152:775–781

    PubMed  Article  CAS  Google Scholar 

  7. Dietrich C, Al Abdallah Q, Lintl L, Pietruszka A, Maiss E (2007) A chimeric plum pox virus shows reduced spread and cannot compete with its parental wild-type viruses in mixed infection. J Gen Virol 88:2846–2851

    PubMed  Article  CAS  Google Scholar 

  8. Diggle PJ (1983) Statistical analysis of spatial point patterns. Academic Press, London

    Google Scholar 

  9. Froissart R, Roze D, Uzest M, Galibert L, Blanc S, Michalakis Y (2005) Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biol 3:389–395

    Article  CAS  Google Scholar 

  10. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    PubMed  Article  CAS  Google Scholar 

  11. Kosakovsky Pond SL, Frost SD, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679

    Article  Google Scholar 

  12. Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901

    PubMed  Article  Google Scholar 

  13. Larsen RC, Miklas PN, Druffel K, Wyatt SD (2005) NL-3 K strain is a stable and naturally occurring interspecific recombinant derived from Bean common mosaic necrosis virus and Bean common mosaic virus. Phytopathology 95:1037–1042

    Article  CAS  Google Scholar 

  14. Lefeuvre P, Lett J-M, Reynaud B, Martin DP (2007) Avoidance of protein fold disruption in natural virus recombinants. PLoS Pathogens 3:1782–1789

    Article  CAS  Google Scholar 

  15. Martin DP, van der Walt E, Posada D, Rybicki EP (2005) The evolutionary value of recombination is constrained by genome modularity. PLoS Genetics 1:e51

    PubMed  Article  Google Scholar 

  16. Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262

    PubMed  Article  CAS  Google Scholar 

  17. Moreno IM, Malpica JM, Diaz-Pendon JA, Moriones E, Fraile A, Garcia-Arenal F (2004) Variability and genetic structure of the population of watermelon mosaic virus infecting melon in Spain. Virology 318:451–460

    PubMed  Article  CAS  Google Scholar 

  18. Moury B, Morel C, Johansen E, Jacquemond M (2002) Evidence for diversifying selection in Potato virus Y and in the coat protein of other potyviruses. J Gen Virol 83:2563–2573

    PubMed  CAS  Google Scholar 

  19. Moury B, Desbiez C, Jacquemond M, Lecoq H (2007) Genetic diversity of plant virus populations: towards hypothesis testing in molecular epidemiology. Adv Virus Res 67:49–87

    Article  Google Scholar 

  20. Ogawa T, Tomitaka Y, Nakagawa A, Ohshima K (2008) Genetic structure of population of Potato virus Y inducing potato tuber necrotic ringspot disease in Japan; comparison with North American and European populations. Virus Res 131:199–212

    PubMed  Article  CAS  Google Scholar 

  21. Ohshima K, Tomitaka Y, Wood JT, Minematsu Y, Kajiyama H, Tomimura K, Gibbs AJ (2007) Patterns of recombination in Turnip mosaic virus genomic sequences indicate hotspots of recombination. J Gen Virol 88:298–315

    PubMed  Article  CAS  Google Scholar 

  22. Paalme V, Gammelgard E, Järvekülg L, Valkonen JPT (2004) In vitro recombinants of two nearly identical potyviral isolates express novel virulence and symptom phenotypes in plants. J Gen Virol 85:739–747

    PubMed  Article  CAS  Google Scholar 

  23. Pond SL, Frost SD (2005) Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533

    PubMed  Article  CAS  Google Scholar 

  24. Ray SC (1998) SimPlot for Windows (version 1.6). Baltimore, Md. Distributed by author. http://www.welch.jhu.edu/sray/download

  25. Revers F, Le Gall O, Candresse T, Le Romancer M, Dunez J (1996) Frequent occurrence of recombinant potyvirus isolates. J Genl Virol 77:1953–1965

    Article  CAS  Google Scholar 

  26. Tan Z, Wada Y, Chen J, Ohshima K (2004) Inter- and intralineage recombinants are common in natural populations of Turnip mosaic virus. J Gen Virol 85:2683–2696

    PubMed  Article  CAS  Google Scholar 

  27. Umashankar V, Arunkumar V, Dorairaj S (2007) ACUA: a software tool for automated codon usage analysis. Bioinformation 2:62–63

    Google Scholar 

  28. Valli A, Lopez-Moya J-J, Garcia JA (2007) Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. J Gen Virol 88:1016–1028

    PubMed  Article  CAS  Google Scholar 

  29. Xia X (2000) Data analysis in molecular biology and evolution. Kluwer Academic Publishers, Boston

    Google Scholar 

  30. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comp Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. J. Chadoeuf for his help in the permutation tests, and Dr. B. Moury for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Desbiez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Desbiez, C., Lecoq, H. Evidence for multiple intraspecific recombinants in natural populations of Watermelon mosaic virus (WMV, Potyvirus). Arch Virol 153, 1749–1754 (2008). https://doi.org/10.1007/s00705-008-0170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-008-0170-2

Keywords

  • Soybean Mosaic Virus
  • Recombination Breakpoint
  • Complete Spatial Randomness
  • Bean Common Mosaic Virus
  • Watermelon Mosaic Virus