Skip to main content

Advertisement

Log in

The methyltransferase domain of the 1a protein of cowpea chlorotic mottle virus controls local and systemic accumulation in cowpea

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The type strain of cowpea chlorotic mottle virus (CCMV-T) induces a local and systemic infection in California Blackeye cowpea (Vigna unguiculata (L.) Walp. subs. unguiculata cv. California Blackeye), but accumulates to low levels in inoculated leaves and fails to accumulate systemically in the cowpea plant introduction (PI) 186465. CCMV-R, a mutant strain derived from CCMV-T, accumulates to higher levels than CCMV-T in inoculated leaves and systemically infects PI 186465 plants. The phenotypic determinant of CCMV-R was previously mapped to viral RNA1, but the location of the determinant within RNA1 was not identified. Pseudorecombinants generated from genomic cDNA clones of CCMV-T and CCMV-R indicated that the phenotypic differences on PI 186465 were independent of replication. Through the use of chimeric RNA1 cDNA clones containing portions of CCMV-T and CCMV-R and site-directed mutagenesis, two nucleotides, 299 (amino acid residue 77) and 951 (amino acid residue 294), were identified as being independently critical for the local and systemic accumulation patterns of CCMV-R in PI 186465 plants. A second independently derived CCMV-R-like mutant, identified nucleotide 216 (amino acid residue 49) as being critical for induction of the CCMV-R infection phenotype. Amino acid residues 49, 77, and 294 are within the methytransferase domain of the CCMV 1a protein, suggesting that the methytransferase domain has a role in cell-to-cell and systemic accumulation of the virus that is independent of replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abbink TEM, Tjernberg PA, Bol JF, Linthorst JM (1998) Tobacco mosaic virus helicase domain induces necrosis in N gene-carrying tobacco in the absence of virus replication. Mol Plant Microbe Interact 11:1242–1246

    Article  CAS  Google Scholar 

  2. Ahlquist P (2000) Bromoviruses (Bromoviridae). In: Granoff A, Webster RG (eds) Encyclopedia of virology, 2nd edn. Academic Press, New York, pp 198–204

    Google Scholar 

  3. Ahlquist P, Noueiry AO, Lee WM, Kushner DB, Dye BT (2003) Host factors in positive-strand RNA virus genome replication. J Virol 77:8181–8186

    Article  PubMed  CAS  Google Scholar 

  4. Ahola T, Laakkonen P, Vihinen H, Kääriäinen L (1997) Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. J Virol 71:392–397

    PubMed  CAS  Google Scholar 

  5. Ahola T, Ahlquist P (1999) Putative RNA capping activities encoded by Brome mosaic virus: methylation and covalent binding of guanylate by replicase protein 1a. J Virol 73:10061–10069

    PubMed  CAS  Google Scholar 

  6. Allison RF, Janda M, Ahlquist P (1988) Infectious in vitro transcripts from Cowpea chlorotic mottle virus cDNA clones and exchange of individual RNA components with Bromo mosaic virus. J Virol 62:3581–3588

    PubMed  CAS  Google Scholar 

  7. Allison RF, Janda M, Ahlquist P (1989) Sequence of Cowpea chlorotic mottle virus RNAs 2 and 3 and evidence of a recombination event during Bromovirus evolution. Virology 172:321–330

    Article  PubMed  CAS  Google Scholar 

  8. Allison RF, Thompson C, Ahlquist P (1990) Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for Cowpea chlorotic mottle virus 3a and coat genes for systemic infection. Proc Natl Acad Sci USA 87:1820–1824

    Article  PubMed  CAS  Google Scholar 

  9. Bateman A, Coin L, Durbin R, Finn RD, Volker H, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer ELL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141

    Article  PubMed  CAS  Google Scholar 

  10. Bao Y, Carter SA, Nelson RS (1996) The 126 and 183-kilodalton proteins of Tobacco mosaic virus, and not their common nucleotide sequence, control mosaic symptom formation in tobacco. J Virol 70:6378–6383

    PubMed  CAS  Google Scholar 

  11. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  12. Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  PubMed  CAS  Google Scholar 

  13. Deom CM, Oliver MJ, Beachy RN (1987) The 30-kilodalton gene product of Tobacco mosaic virus potentiates virus movement. Science 237:389–394

    Article  PubMed  CAS  Google Scholar 

  14. Deom CM, He XZ, Beachy RN, Weissinger AK (1994) Influence of heterologous Tobamovirus movement protein and chimeric movement protein genes on cell-to-cell and long distance movement. Virology 205:198–209

    Article  PubMed  CAS  Google Scholar 

  15. Deom CM, Quan S, He XZ (1997) Replicase proteins as determinants of phloem-dependent movement of tobamoviruses in tobacco. Protoplasma 199:1–8

    Article  CAS  Google Scholar 

  16. Derrick PM, Carter SA, Nelson RS (1997) Mutation of the Tobacco mosaic tobamovirus 126-kDa and 183-kDa proteins: effects on phloem-dependent virus accumulation and synthesis of viral proteins. Mol Plant Microbe Interact 10:589–596

    Article  CAS  Google Scholar 

  17. Ding XS, Lui JZ, Cheng NH, Folimonov A, Hou YM, Bao YM, Katagi C, Carter SA, Nelson RS (2004) The tobacco mosaic virus 126-kDa protein associated with virus replication and movement suppresses RNA silencing. Mol Plant Microbe Interact 17:583–592

    Article  PubMed  CAS  Google Scholar 

  18. Dzianott AM, Bujarski JJ (1991) The nucleotide sequence and genome organization of the RNA-1 segment in two Bromoviruses: broad bean mottle virus and cowpea chlorotic mottle virus. Virology 185:553–562

    Article  PubMed  CAS  Google Scholar 

  19. Edwards MC, Gonsalves D, Provvidenti R (1983) Genetic analysis of Cucumber mosaic virus in relation to host resistance: location of determinants for pathogenicity to certain legumes and Lactuca saligna. Phytopathology 73:269–273

    Article  Google Scholar 

  20. Gal-On A, Kaplin I, Roossinck MJ, Palukaitis P (1994) The kinetics of infection of zucchini squash by Cucumber mosaic virus indicates a function for RNA 1 in virus movement. Virology 205:280–289

    Article  PubMed  CAS  Google Scholar 

  21. Gopinath K, Dragnea B, Kao C (2005) Interaction between bromo mosaic virus proteins and RNAs: effects on RNA replication, protein expression, and RNA stability. J Virol 79:14222–14234

    Article  PubMed  CAS  Google Scholar 

  22. Goregaoker SP, Lewandowski DJ, Culver JN (2001) Identification and functional analysis of an interaction between domains of the 126/183-kDa replicase-associated proteins of tobacco mosaic virus. Virology 282:320–328

    Article  PubMed  CAS  Google Scholar 

  23. Hirashima K, Watanabe Y (2001) Tobamovirus replicase coding region is involved in cell-to-cell movement. J Virol 75:8831–8836

    Article  PubMed  CAS  Google Scholar 

  24. Hirashima K, Watanabe Y (2003) RNA helicase domain of tobamovirus replicase executes cell-to-cell movement possibly through collaboration with its nonconserved region. J Virol 77:12357–12362

    Article  PubMed  CAS  Google Scholar 

  25. Ishikawa M, Okada Y (2004) Replication of tobamovirus RNA. Proc Jpn Acad Ser B80:215–224

    Article  Google Scholar 

  26. Kim C-H, Palukaitis P (1997) The plant defense response to Cucumber mosaic virus in cowpea is elicited by the viral polymerase gene and affects virus accumulation in single cells. EMBO J 16:4060–4068

    Article  PubMed  CAS  Google Scholar 

  27. Knapp E, Danyluk GM, Achor D, Lewandowski DJ (2005) A bipartite Tobacco mosaic virus-defective RNA (dRNA) system to study the role of the N-terminal methyltransferase domain in cell-to-cell movement of dRNA. Virology 341:47–58

    Article  PubMed  CAS  Google Scholar 

  28. Knapp E, Achor D, Lewandowski DJ (2007) Tobacco mosaic virus defective RNAs expressing C-terminal methyltransferase domain sequences are severely impaired in long-distance movement in Nicotiana benthamiana. Virology 367:82–91

    Article  PubMed  CAS  Google Scholar 

  29. Kong F, Sivakumaran K, Kao C (1999) The N-terminal half of Brome mosaic virus 1a protein has RNA capping-associated activities: specificity for GTP S-adenosylmethionine. Virology 259:200–210

    Article  PubMed  CAS  Google Scholar 

  30. Kroner PA, Young BM, Ahlquist P (1990) Analysis of the role of Brome mosaic virus 1a protein domains in RNA replication, using a linker insertion mutagenesis. J Virol 64:6110–6120

    PubMed  CAS  Google Scholar 

  31. Kubota K, Tsuda S, Tamai A, Meshi T (2003) Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J Virol 77:11016–11026

    Article  PubMed  CAS  Google Scholar 

  32. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  33. Lucas WJ (2006) Plant viral movement proteins: Agents for cell-to-cell trafficking of viral genomes. Virology 344:169–184

    Article  PubMed  CAS  Google Scholar 

  34. Meshi T, Motoyoshi F, Adachi A, Watanabe Y, Takanatsu N, Okada Y (1988) Two concomitant base substitutions in the putative replicase genes of Tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, Tm-1. EMBO J 7:1575–1581

    PubMed  CAS  Google Scholar 

  35. Mi S, Durbin R, Huang HV, Rice CM, Stollar V (1989) Association of the Sindbis virus RNA methyltransferase activity with the nonstructural protein nsP1. Virology 170:385–391

    Article  PubMed  CAS  Google Scholar 

  36. Mise K, Ahlquist P (1995) Host-specificity restriction by Bromovirus cell-to-cell movement protein occurs after initial cell-to-cell spread of infection in nonhost plants. Virology 206:276–286

    Article  PubMed  CAS  Google Scholar 

  37. Nelson RS, Li G, Hodgson RAJ, Beachy RN, Shintaku MH (1993) Impeded phloem-dependent accumulation of the masked strain of tobacco mosaic virus. Mol Plant Microbe Interact 6:45–54

    Google Scholar 

  38. Nelson RS, Citovsky V (2005) Plant viruses. Invaders of cells and pirates of cellular pathways. Plant Physiol 138:1809–1814

    Article  PubMed  CAS  Google Scholar 

  39. Padgett HS, Beachy RN (1993) Analysis of a Tobacco mosaic virus strain capable of overcoming N gene-mediated resistance. Plant Cell 5:577–586

    Article  PubMed  CAS  Google Scholar 

  40. Rabindran S, Robertson C, Achor D, German-Retana S, Holt CA, Dawson WO (2005) Odontoglossum ringspot virus host range restriction in Nictiana sylvestris maps to the replicase gene. Mol Plant Pathol 6:439–447

    Article  CAS  Google Scholar 

  41. Rozanov MH, Koonin EV, Gorbalenya AE (1992) Conservation of the putative methyltransferase domain: a hallmark of the ‘Sindbis-like’ supergroup of positive-stranded RNA viruses. J Gen Virol 73:2129–2134

    Article  PubMed  CAS  Google Scholar 

  42. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  43. Schneider WL, Roossinck MJ (2000) Evolutionarily related sindbis-like plant viruses maintain different levels of population diversity in a common host. J Virol 74:3130–3134

    Article  PubMed  CAS  Google Scholar 

  44. Scholthof HB (2005) Plant virus transport: motions of functional equivalence. Trends Plant Sci 10:376–382

    Article  PubMed  CAS  Google Scholar 

  45. Shintaku MH, Carter SA, Bao Y, Nelson RS (1996) Mapping nucleotides in the 126-kDa protein gene that control the differential symptoms induced by two strains of Tobacco mosaic virus. Virology 221:218–225

    Article  PubMed  CAS  Google Scholar 

  46. Takebe I (1984) Inoculation of protoplasts with plant viruses. In: Cell culture and somatic cell genetics of plants., vol 1. Academic Press, San Diego, pp 492–502

    Google Scholar 

  47. Traynor P, Young BM, Ahlquist P (1991) Deletion analysis of Brome mosaic virus 2a protein: effects on RNA replication and systemic spread. J Virol 65:2807–2815

    PubMed  CAS  Google Scholar 

  48. Verchot-Lubicz J (2005) A new cell-to-cell transport model for potexviruses. Mol Plant Microbe Interact 18:283–290

    Article  PubMed  CAS  Google Scholar 

  49. Voinnet O (2005) Induction and suppression of RNA silencing: Insights from viral infections. Nat Rev Genet 6:206–221

    Article  PubMed  CAS  Google Scholar 

  50. Waigmann E, Ueki S, Trutnyeva K, Citovsky V (2004) The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit Rev Plant Sci 23:195–250

    Article  CAS  Google Scholar 

  51. Wang HL, O’Rear J, Stollar V (1996) Mutagenesis of the Sindbis virus nsP1 protein: effects on methyltransferase activity and viral infectivity. Virology 217:527–531

    Article  PubMed  CAS  Google Scholar 

  52. Weiland JJ, Edwards MC (1996) A single nucleotide substitution in the αa gene confers oat pathogenicity to Barley stripe mosaic virus strain ND18. Mol Plant Microbe Interact 9:62–67

    PubMed  CAS  Google Scholar 

  53. Wyatt SD, Kuhn CW (1979) Replication and properties of Cowpea chlorotic mottle virus in resistant cowpeas. Phytopathology 69:125–129

    CAS  Google Scholar 

  54. Wyatt SD, Kuhn CW (1980) Derivation of a new strain of Cowpea chlorotic mottle virus from resistant cowpeas. J Gen Virol 49:289–296

    Article  CAS  Google Scholar 

  55. Wyatt SD, Wilkinson TC (1984) Increase and spread of Cowpea chlorotic mottle virus in resistant and fully susceptible cowpeas. Physiol Plant Pathol 24:339–345

    Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Samuel Roberts Noble Foundation. The authors thank O. Paguio for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Deom.

Additional information

The GenBank/EMBL/DDBJ accession numbers for CCMV sequences in pR1, pR2, pR3, pT1, pT2, and pT3 reported in this paper are AF325736, AF325737, AF325738, AF325739, AF325740, AF325741, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, S., Nelson, R.S. & Deom, C.M. The methyltransferase domain of the 1a protein of cowpea chlorotic mottle virus controls local and systemic accumulation in cowpea. Arch Virol 153, 1505–1516 (2008). https://doi.org/10.1007/s00705-008-0137-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-008-0137-3

Keywords

Navigation