Archives of Virology

, Volume 153, Issue 3, pp 605–609 | Cite as

Novel sugarcane streak and sugarcane streak Reunion mastreviruses from southern Africa and La Réunion

  • Dionne N. Shepherd
  • Arvind Varsani
  • Oliver P. Windram
  • Pierre Lefeuvre
  • Adérito L. Monjane
  • Betty E. Owor
  • Darren P. Martin
Annotated Sequence Record

Abstract

The sugarcane infecting streak viruses (SISVs) are mastreviruses (Family Geminiviridae) belonging to a group of “African streak viruses” (AfSVs) that includes the economically devastating Maize streak virus (MSV). Although there are three currently described SISV species (Sugarcane streak virus [SSV], Sugarcane streak Egypt virus [SSEV] and Sugarcane streak Réunion virus [SSRV]), only one strain variant has been fully sequenced for each of these species and as a result very little is known about the diversity and evolutionary origins of the SCISVs. Here we present annotated full genome sequences of four new SISV isolates, including a new strain of both SSRV and SSV, and one potentially new SISV species, sampled from wild grasses in La Réunion and Zimbabwe. For the first time, we report the finding of SSRV isolates in Zimbabwe and SSV isolates on the island of La Réunion. Phylogenetic and recombination analyses indicate continent-wide SSRV strain diversity and that our isolate potentially representing a new SISV species is a recombinant.

Keywords

Full Genome Sequence Streak Virus Maize Streak Virus Indian Ocean Island Branch Point Sequence 

Notes

Acknowledgments

This research was partially funded by the National Research Foundation (South Africa). AV is supported by the Carnegie Corporation of New York; DNS is supported by PANNAR (Pty) Ltd; DPM is supported by the Harry Oppenheimer Trust and the Sydney Brenner Fellowship; PL is supported by the French Ministère de la Recherche et de l’Enseignement Supérieur; BO is supported by the Rockefeller foundation through the USHEPiA programme; ALM is supported by the Canon Collins Trust for Southern Africa and a University of Cape Town International Scholarship.

Supplementary material

705_2007_16_MOESM1_ESM.pdf (82 kb)
ESM 1 (PDF 81.9 KB)

References

  1. 1.
    Bigarré L, Salah M, Granier M, Frutos R, Thouvenel J-C, Peterschmitt M (1999) Nucleotide sequence evidence for three distinct sugarcane streak mastreviruses. Arch Virol 144:2331–2344PubMedCrossRefGoogle Scholar
  2. 2.
    Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035–1047PubMedCrossRefGoogle Scholar
  3. 3.
    Briddon RW, Lunness P, Bedford ID, Chamberlin LC, Mesfin T, Markham PG (1996) A streak disease of pearl millet caused by a leafhopper-transmitted geminivirus. Eur J Plant Pathol 102:397–400CrossRefGoogle Scholar
  4. 4.
    Delatte H, Martin DP, Naze F, Goldbach R, Reynaud B, Peterschmitt M, Lett JM (2005) South West Indian Ocean islands tomato begomovirus populations represent a new major monopartite begomovirus group. J Gen Virol 86:1533–1542PubMedCrossRefGoogle Scholar
  5. 5.
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  6. 6.
    Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (2005) Virus Taxonomy, 8th edn. Elsevier Academic Press, New YorkGoogle Scholar
  7. 7.
    Fenoll C, Black DM, Howell SH (1988) The intergenic region of maize streak virus contains promoter elements involved in rightward transcription of the viral genome. EMBO J 7:1589–1596PubMedGoogle Scholar
  8. 8.
    Fenoll C, Schwarz JJ, Black DM, Schneider M, Howell SH (1990) The intergenic region of maize streak virus contains a GC-rich element that activates rightward transcription and binds maize nuclear factors. Plant Mol Biol 15:865–877PubMedCrossRefGoogle Scholar
  9. 9.
    Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573–582PubMedCrossRefGoogle Scholar
  10. 10.
    Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  11. 11.
    Hughes FL, Rybicki EP, Kirby R (1993) Complete nucleotide sequence of sugarcane streak Monogeminivirus. Arch Virol 132:171–182PubMedCrossRefGoogle Scholar
  12. 12.
    Lefeuvre P, Martin DP, Hoareau M, Naze F, Delatte H, Thierry M, Varsani A, Becker N, Reynaud B, Lett JM (2007) Begomovirus ‘melting pot’ in the south-west Indian Ocean islands: molecular diversity and evolution through recombination. J Gen Virol 88:3458–3468PubMedCrossRefGoogle Scholar
  13. 13.
    Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563PubMedCrossRefGoogle Scholar
  14. 14.
    Martin DP, Posada D, Crandall KA, Williamson C (2005a) A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21:98–102PubMedCrossRefGoogle Scholar
  15. 15.
    Martin DP, Williamson C, Posada D (2005b) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262PubMedCrossRefGoogle Scholar
  16. 16.
    Martin DP, Willment JA, Billharz R, Velders R, Odhiambo B, Njuguna J, James D, Rybicki EP (2001) Sequence diversity and virulence in Zea mays of Maize streak virus isolates. Virology 288:247–255PubMedCrossRefGoogle Scholar
  17. 17.
    Maynard Smith J (1992) Analyzing the mosaic structure of genes. J Mol Evol 34:126–129Google Scholar
  18. 18.
    Owor BE, Shepherd DN, Taylor NJ, Edema R, Monjane AL, Thomson JA, Martin DP, Varsani A (2007) Successful application of FTA classic card technology and use of bacteriophage phi29 DNA polymerase for large-scale field sampling and cloning of complete maize streak virus genomes. J Virol Methods 140:100–105PubMedCrossRefGoogle Scholar
  19. 19.
    Owor BE, Martin DP, Shepherd DN, Edema R, Monjane AL, Rybicki EP, Thomson JA, Varsani A (2007) Genetic analysis of maize streak virus isolates from Uganda reveals widespread distribution of a recombinant variant. J Gen Virol 88:3154–3165PubMedCrossRefGoogle Scholar
  20. 20.
    Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225PubMedCrossRefGoogle Scholar
  21. 21.
    Peterschmitt M, Reynaud B, Sommermeyer G, Baudin P (1991) Characterization of maize streak virus isolates using monoclonal and polyclonal antibodies and by transmission to a few hosts. Plant Dis 75:27–32CrossRefGoogle Scholar
  22. 22.
    Posada D (2006) ModelTest server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res 34:700–703CrossRefGoogle Scholar
  23. 23.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  24. 24.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Dionne N. Shepherd
    • 1
  • Arvind Varsani
    • 1
    • 2
  • Oliver P. Windram
    • 3
  • Pierre Lefeuvre
    • 4
  • Adérito L. Monjane
    • 1
  • Betty E. Owor
    • 1
  • Darren P. Martin
    • 5
  1. 1.Department of Molecular and Cell BiologyUniversity of Cape TownRondeboschSouth Africa
  2. 2.Electron Microscope UnitUniversity of Cape TownRondebosch, Cape TownSouth Africa
  3. 3.Warwick Systems Biology CentreUniversity of WarwickWellesbourneUK
  4. 4.CIRAD, UMR 53 PVBMT CIRAD-Université de la RéunionSaint Pierre, La RéunionFrance
  5. 5.Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa

Personalised recommendations