Skip to main content
Log in

Use of RNAi technology to confer enhanced resistance to BmNPV on transgenic silkworms

  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary.

dsRNA is a powerful tool for gene-specific silencing in plants and animals. In this study, we examined the use of gene silencing in generating transgenic silkworms resistant to the Bombyx mori nucleopolyhedrovirus (BmNPV). Using a transposon piggyBac system, we first generated BmN cells (rBmN-lef1), which carried artificial genes designed for expressing dsRNAs with sequences of the essential viral gene lef-1. NPV DNA microarray analysis revealed that the accumulation of lef-1 mRNA was successfully inhibited in rBmN-lef1 infected with BmNPV. The virus titer in the culture medium of rBmN-lef1 at 48 hr post-infection (h.p.i.) was 50% of that of the control cells. Moderate BmNPV-resistance caused by transgenesis of the artificial dsRNA-expressing gene was confirmed in the transgenic silkworms. Virus production was reduced in transgenic silkworms relative to controls up to 96 hrs after viral inoculation. Although complete protection was not achieved and the transgenic larvae ultimately died, this is the first report to show the use of RNAi in confering enhanced viral resistance on transgenic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isobe, R., Kojima, K., Matsuyama, T. et al. Use of RNAi technology to confer enhanced resistance to BmNPV on transgenic silkworms. Arch Virol 149, 1931–1940 (2004). https://doi.org/10.1007/s00705-004-0349-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-004-0349-0

Keywords

Navigation