Skip to main content

Advertisement

Log in

Temperature and precipitation changes under CMIP6 projections in the Mujib Basin, Jordan

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A comprehensive analysis of regional climate changes is essential in arid and semi-arid regions to optimize water resources management. This research aims to evaluate the changes in temperature and precipitation across the Mujib Basin in Jordan, using the most recent Coupled Model Inter-comparison Project Phase 6 (CMIP6) model. Firstly, the performance of six CMIP6 general circulation models (GCMs) to reproduce historical temperature and precipitation from 1985 to 2014 was evaluated using observed climate data. The most suitable GCM was then bias-corrected using the linear scaling approach. The findings demonstrate that the EC-Earth3–Veg model could reasonably simulate the historical climate pattern of the Mujib Basin, with coefficient of determination (R2) values of 0.90, 0.83, and 0.65 for monthly Tmin, Tmax, and precipitation, respectively. Under both the SSP2-4.5 and SSP5-8.5 scenarios, Tmax is projected to increase by 1.4 to 3.9 °C and 1.6 to 6.8 °C, respectively, whereas Tmin increases from 1.4 to 3.4 °C and 1.6 to 6.4 °C. Furthermore, precipitation is projected to decrease by 4.61–23.2% at the end of the 21st century. These findings could help policymakers in formulating better adaptation strategies to reduce the impact of climate change in Jordan This is a crucial step toward becoming a climate-resilient nation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No datasets were generated during the current study.

References

  • Abdulla FA, Alham WA, Shawaqfah MS (2021) Statistically downscaling climate change projection of precipitation and temperature over the semi-arid Yarmouk Basin, Jordan. Int J Global Warming 24(3/4):261–280

    Google Scholar 

  • Aditya F, Gusmayanti E, Sudrajat J (2021) Rainfall trend analysis using Mann-Kendall and Sen’s slope estimator test in West Kalimantan. IOP Conference Series: Earth and Environmental Science

  • Al Saodi R, Al Kuisi M, Salaymeh A, A (2023) Assessing the vulnerability of flash floods to climate change in arid zones: Amman-Zarqa Basin, Jordan. J Water Clim Change 14:4376–4403

    Google Scholar 

  • Al-Addous M, Bdour M, Alnaief M, Rabaiah S, Schweimanns N (2023) Water resources in Jordan: a review of current challenges and Future opportunities. Water 15:3729

    Google Scholar 

  • Al-Assa’d TA, Abdulla FA (2010) Artificial groundwater recharge to a semi-arid basin: case study of Mujib aquifer, Jordan. Environ Earth Sci 60(4):845–859

    Google Scholar 

  • Al-Hasani I, Al-Qinna M, Hammouri NA (2023) Potential impacts of Climate Change on Surface Water resources in arid regions using Downscaled Regional circulation model and Soil Water Assessment Tool, a case study of Amman-Zerqa Basin, Jordan. Climate 11(3):51

    Google Scholar 

  • Ali Z, Hamed MM, Muhammad MKI, Iqbal Z, Shahid S (2023) Performance evaluation of CMIP6 GCMs for the projections of precipitation extremes in Pakistan. Climate dynamics, 1–16

  • Almazroui M, Saeed F, Saeed S, Nazrul Islam M, Ismail M, Klutse NAB, Siddiqui MH (2020) Projected change in temperature and precipitation over Africa from CMIP6. Earth Syst Environ 4:455–475

    Google Scholar 

  • Arshad M, Ma X, Yin J, Ullah W, Liu M, Ullah I (2021) Performance evaluation of ERA-5, JRA-55, MERRA-2, and CFS-2 reanalysis datasets, over diverse climate regions of Pakistan. Weather Clim Extremes 33:100373

    Google Scholar 

  • Ayugi B, Dike V, Ngoma H, Babaousmail H, Ongoma V (2021a) Future changes in precipitation extremes over East Africa based on CMIP6 projections. Water 13(17):2358

    Google Scholar 

  • Ayugi B, Zhihong J, Zhu H, Ngoma H, Babaousmail H, Rizwan K, Dike V (2021b) Comparison of CMIP6 and CMIP5 models in simulating mean and extreme precipitation over East Africa. Int J Climatol 41(15):6474–6496

    Google Scholar 

  • Babaousmail H, Ayugi BO, Ojara M, Ngoma H, Oduro C, Mumo R, Ongoma V (2023) Evaluation of CMIP6 models for simulations of diurnal temperature range over Africa. J Afr Earth Sc 202:104944

    Google Scholar 

  • Bayissa Y, Tadesse T, Demisse G, Shiferaw A (2017) Evaluation of satellite-based rainfall estimates and application to monitor meteorological drought for the Upper Blue Nile Basin, Ethiopia. Remote Sens 9(7):669

    Google Scholar 

  • Brown D, Polsky C, Bolstad PV, Brody SD, Hulse D, Kroh R, Loveland T, Thomson AM (2014). Land use and land cover change

  • Chen H, Sun J, Lin W, Xu H (2020) Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci Bull 65(17):1415–1418

    Google Scholar 

  • Christie D, Neill SP (2021) Measuring and observing the ocean renewable energy resource. Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands

  • Cui T, Li C, Tian F (2021) Evaluation of temperature and precipitation simulations in CMIP6 models over the Tibetan Plateau. Earth Space Sci 8(7):e2020EA001620

    Google Scholar 

  • Dawood M (2017) Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s slope approach. Clim Dyn 48(3–4):783–797

    Google Scholar 

  • Dibaba WT, Demissie TA, Miegel K (2020) Watershed hydrological response to combined land use/land cover and climate change in Highland Ethiopia: Finchaa catchment. Water 12(6):1801

    Google Scholar 

  • Dong T, Dong W (2021) Evaluation of extreme precipitation over Asia in CMIP6 models. Clim Dyn 57(7–8):1751–1769

    Google Scholar 

  • Donnelly C, Greuell W, Andersson J, Gerten D, Pisacane G, Roudier P, Ludwig F (2017) Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim Change 143:13–26

    Google Scholar 

  • Doulabian S, Golian S, Toosi AS, Murphy C (2021) Evaluating the effects of climate change on precipitation and temperature for Iran using RCP scenarios. J Water Clim Change 12(1):166–184

    Google Scholar 

  • Duan Z, Bastiaanssen W, Liu J (2012) Monthly and annual validation of TRMM Mulitisatellite Precipitation Analysis (TMPA) products in the Caspian Sea Region for the period 1999–2003. 2012 IEEE International Geoscience and Remote Sensing Symposium

  • Egeru A, Barasa B, Nampijja J, Siya A, Makooma MT, Majaliwa MGJ (2019) Past, present and future climate trends under varied representative concentration pathways for a sub-humid region in Uganda. Climate 7(3):35

    Google Scholar 

  • Ekwueme BN, Agunwamba JC (2021) Trend analysis and variability of air temperature and rainfall in regional river basins. Civil Eng J 7(5):816–826

    Google Scholar 

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958

    Google Scholar 

  • Fan X, Duan Q, Shen C, Wu Y, Xing C (2020) Global surface air temperatures in CMIP6: historical performance and future changes. Environ Res Lett 15:104056

    Google Scholar 

  • Fang G, Yang J, Chen Y, Zammit C (2015) Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol Earth Syst Sci 19(6):2547–2559

    Google Scholar 

  • Girma D, Berhanu B (2021) Evaluation of the performance of high-resolution satellite based rainfall products for stream flow simulation. J Civil Environ Eng, 11(4)

  • Graham LP, Andréasson J, Carlsson B (2007) Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods–a case study on the Lule River basin. Clim Change 81(Suppl 1):293–307

    Google Scholar 

  • Grose MR, Narsey S, Delage F, Dowdy AJ, Bador M, Boschat G, Chung C, Kajtar J, Rauniyar S, Freund M (2020) Insights from CMIP6 for Australia’s future climate. Earth’s Future, 8(5), e2019EF001469

  • Hamed MM, Nashwan MS, Shahid S (2021) Performance evaluation of reanalysis precipitation products in Egypt using fuzzy entropy time series similarity analysis. Int J Climatol 41(11):5431–5446

    Google Scholar 

  • Hamed MM, Nashwan MS, Shahid S (2022) Inter-comparison of historical simulation and future projections of rainfall and temperature by CMIP5 and CMIP6 GCMs over Egypt. Int J Climatol 42(8):4316–4332

    Google Scholar 

  • Hochman A, Bucchignani E, Gershtein G, Krichak SO, Alpert P, Levi Y, Yosef Y, Carmona Y, Breitgand J, Mercogliano P (2018) Evaluation of regional COSMO-CLM climate simulations over the Eastern Mediterranean for the period 1979–2011. Int J Climatol 38(3):1161–1176

    Google Scholar 

  • IPCC (2013) The physical science basis. (No Title)

  • IPCC (2014) Impacts, adaptation and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental Panel on Climate Change, 1132

  • Iqbal Z, Shahid S, Ahmed K, Ismail T, Ziarh GF, Chung E-S, Wang X (2021) Evaluation of CMIP6 GCM rainfall in mainland Southeast Asia. Atmos Res 254:105525

    Google Scholar 

  • Jiang Q, Li W, Wen J, Qiu C, Sun W, Fang Q, Xu M, Tan J (2018) Accuracy evaluation of two high-resolution satellite-based rainfall products: TRMM 3B42V7 and CMORPH in Shanghai. Water 10(1):40

    Google Scholar 

  • Jose DM, Dwarakish GS (2020) Uncertainties in predicting impacts of climate change on hydrology in basin scale: a review. Arab J Geosci 13(19):1037

    Google Scholar 

  • Jose DM, Dwarakish GS (2022) Ranking of downscaled CMIP5 and CMIP6 GCMs at a basin scale: case study of a tropical river basin on the South West coast of India. Arab J Geosci 15(1):120

    Google Scholar 

  • Kendall MG (1975) Rank correlation methods

  • Kisembe J, Favre A, Dosio A, Lennard C, Sabiiti G, Nimusiima A (2019) Evaluation of rainfall simulations over Uganda in CORDEX regional climate models. Theoret Appl Climatol 137:1117–1134

    Google Scholar 

  • Kumar N, Panchal C, Chandrawanshi S, Thanki J (2017) Analysis of rainfall by using Mann-Kendall trend, Sen’s slope and variability at five districts of south Gujarat, India. Mausam 68(2):205–222

    Google Scholar 

  • Lee JK, Kim YO, Kim Y (2017) A new uncertainty analysis in the climate change impact assessment. Int J Climatol 37(10):3837–3846

    Google Scholar 

  • Lenderink G, Buishand A, Van Deursen W (2007) Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrol Earth Syst Sci 11(3):1145–1159

    Google Scholar 

  • Lin Q, Chen J, Li W, Huang K, Tan X, Chen H (2021) Impacts of land use change on thermodynamic and dynamic changes of precipitation for the Yangtze River Basin, China. Int J Climatol 41(6):3598–3614

    Google Scholar 

  • Lu K, Arshad M, Ma X, Ullah I, Wang J, Shao W (2022) Evaluating observed and future spatiotemporal changes in precipitation and temperature across China based on CMIP6-GCMs. Int J Climatol 42(15):7703–7729

    Google Scholar 

  • Lun Y, Liu L, Cheng L, Li X, Li H, Xu Z (2021) Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. Int J Climatol 41(7):3994–4018

    Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica: J Econometric Soc, 245–259

  • Maraun D, Wetterhall F, Ireson A, Chandler R, Kendon E, Widmann M, Brienen S, Rust H, Sauter T, Themeßl M (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys, 48(3)

  • Matouq M, El-Hasan T, Al-Bilbisi H, Abdelhadi M, Hindiyeh M, Eslamian S, Duheisat S (2013) The climate change implication on Jordan: a case study using GIS and Artificial neural networks for weather forecasting. J Taibah Univ Sci 7(2):44–55

    Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756

    CAS  Google Scholar 

  • Nashwan MS, Shahid S (2020) A novel framework for selecting general circulation models based on the spatial patterns of climate. Int J Climatol 40(10):4422–4443

    Google Scholar 

  • Nyikadzino B, Chitakira M, Muchuru S (2020) Rainfall and runoff trend analysis in the Limpopo river basin using the Mann Kendall statistic. Phys Chem Earth Parts A/B/C 117:102870

    Google Scholar 

  • O’Neill BC, Tebaldi C, Van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J-F, Lowe J (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Dev 9(9):3461–3482

    Google Scholar 

  • Ongoma V, Chen H, Gao C, Nyongesa AM, Polong F (2018) Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble. Nat Hazards 90:901–920

    Google Scholar 

  • Onyutha C, Asiimwe A, Muhwezi L, Mubialiwo A (2021) Water availability trends across water management zones in Uganda. Atmospheric Sci Lett, 22(10), e1059

  • Piñeiro G, Perelman S, Guerschman JP, Paruelo JM (2008) How to evaluate models: observed vs. predicted or predicted vs. Observed? Ecol Modelling 216(3–4):316–322

    Google Scholar 

  • Riahi K, Van Vuuren DP, Kriegler E, Edmonds J, O’neill BC, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O (2017) The Shared Socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Change 42:153–168

    Google Scholar 

  • Samawi M, Sabbagh N (2004) Application of methods for analysis of rainfall intensity in areas of Israeli, Jordanian, and Palestinian interest. Amman: Jordanian Meteorological Department, Ministry of Water and Irrigation

  • Samuels R, Rimmer A, Hartmann A, Krichak S, Alpert P (2010) Climate Change impacts on Jordan River Flow: Downscaling Application from a Regional Climate Model. J Hydrometeorol 11:860–879

    Google Scholar 

  • Schewe J, Heinke J, Gerten D, Haddeland I, Arnell N. W., Clark DB, Dankers R, Eisner S, Fekete B. M., Colón-González F. J. (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111(9):3245–3250

  • Schlund M, Lauer A, Gentine P, Sherwood SC, Eyring V (2020) Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6? Earth Sys Dyn 11(4):1233–1258

    Google Scholar 

  • Seland Ø, Bentsen M, Graff S, Olivié L, Toniazzo D, Gjermundsen T, Debernard A, Gupta JB, He AK, Y., Kirkevåg A (2020) The Norwegian earth system model, noresm2–Evaluation of thecmip6 deck and historical simulations. Geoscientific Model Dev Discuss, 1–68

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Google Scholar 

  • Setti S, Maheswaran R, Sridhar V, Barik KK, Merz B, Agarwal A (2020) Inter-comparison of gauge-based gridded data, reanalysis and satellite precipitation product with an emphasis on hydrological modeling. Atmosphere 11(11):1252

    Google Scholar 

  • Shehadeh N (1991) The climate of Jordan. Dar Al-Bashir, Amman

  • Shiru MS, Chung E-S (2021) Performance evaluation of CMIP6 global climate models for selecting models for climate projection over Nigeria. Theoret Appl Climatol 146(1–2):599–615

    Google Scholar 

  • Sperber K, Annamalai H, Kang I-S, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744

    Google Scholar 

  • Stouffer RJ, Eyring V, Meehl GA, Bony S, Senior C, Stevens B, Taylor K (2017) CMIP5 scientific gaps and recommendations for CMIP6. Bull Am Meteorol Soc 98(1):95–105

    Google Scholar 

  • Su B, Huang J, Mondal SK, Zhai J, Wang Y, Wen S, Gao M, Lv Y, Jiang S, Jiang T (2021) Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos Res 250:105375

    Google Scholar 

  • Swart NC, Cole JN, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Anstey J, Arora V, Christian JR, Hanna S (2019) The Canadian earth system model version 5 (CanESM5. 0.3). Geosci Model Dev 12(11):4823–4873

    CAS  Google Scholar 

  • Sy S, Quesada B (2020) Anthropogenic land cover change impact on climate extremes during the 21st century. Environ Res Lett 15(3):034002

    Google Scholar 

  • Tabari H, Talaee PH (2011) Analysis of trends in temperature data in arid and semi-arid regions of Iran. Glob Planet Change 79(1–2):1–10

    Google Scholar 

  • Tan ML, Liang J, Samat N, Chan NW, Haywood JM, Hodges K (2021) Hydrological extremes and responses to Climate Change in the Kelantan River Basin, Malaysia, based on the CMIP6 HighResMIP experiments. Water 13:1472

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Research: Atmos 106(D7):7183–7192

    Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456:12–29

    Google Scholar 

  • Teutschbein C, Seibert J (2013) Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions? Hydrol Earth Syst Sci 17(12):5061–5077

    Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Climate Res 47(1–2):123–138

    Google Scholar 

  • Van Ty T, Tri LH, Van Tho N, Van Toan N, Nhat GM, Downes NK, Kumar P, Minh HVT (2023) Evaluating the performance of CMIP6 GCMs to simulate precipitation and temperature over the Vietnamese Mekong Delta. J Clim Change 9(2):31–42

    Google Scholar 

  • Walther BA, Moore JL (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28(6):815–829

    Google Scholar 

  • Wu T, Lu Y, Fang Y, Xin X, Li L, Li W, Jie W, Zhang J, Liu Y, Zhang L (2019) The Beijing Climate Center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci Model Dev 12(4):1573–1600

    Google Scholar 

  • Wu J, Shi Y, Xu Y (2020) Evaluation and projection of surface wind speed over China based on CMIP6 GCMs. J Geophys Research: Atmos 125(22):e2020JD033611

    Google Scholar 

  • Yang M, Wang X, Pang G, Wan G, Liu Z (2019) The Tibetan Plateau cryosphere: observations and model simulations for current status and recent changes. Earth Sci Rev 190:353–369

    Google Scholar 

  • Yoon J-H, Wang SS, Gillies RR, Kravitz B, Hipps L, Rasch PJ (2015) Increasing water cycle extremes in California and in relation to ENSO cycle under global warming. Nat Commun 6(1):8657

    CAS  Google Scholar 

  • You Q, Min J, Kang S (2016) Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. Int J Climatol 36(6):2660–2670

    Google Scholar 

  • Yue Y, Yan D, Yue Q, Ji G, Wang Z (2021) Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs. Atmos Res 264:105828

    Google Scholar 

  • Zhang M, Chen Y, Shen Y, Li B (2019) Tracking climate change in Central Asia through temperature and precipitation extremes. J Geog Sci 29:3–28

    Google Scholar 

  • Zhang Z, Duan K, Liu H, Meng Y, Chen R (2022) Spatio-temporal variation of precipitation in the Qinling mountains from 1970 to 2100 based on CMIP6 data. Sustainability 14(14):8654

    Google Scholar 

  • Zhao C, Jiang Z, Sun X, Li W, Li L (2020) How well do climate models simulate regional atmospheric circulation over East Asia? Int J Climatol 40(1):220–234

    Google Scholar 

  • Zhao Y, Qian C, Zhang W, He D, Qi Y (2021) Extreme temperature indices in Eurasia in a CMIP6 multi-model ensemble: evaluation and projection. Int J Climatol 41(11):5368–5385

    Google Scholar 

  • Zhu Y-Y, Yang S (2020) Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv Clim Change Res 11(3):239–251

    Google Scholar 

  • Zittis G, Almazroui M, Alpert P, Ciais P, Cramer W, Dahdal Y, Fnais M, Francis D, Hadjinicolaou P, Howari F (2022) Climate change and weather extremes in the Eastern Mediterranean and Middle East. Rev Geophys 60(3):e2021RG000762

    Google Scholar 

Download references

Acknowledgements

Thanks the Ministry of Water and Irrigation for supplying the data.

Funding

This research was supported by the Universiti Sains Malaysia, Research University Team (RUTeam) Grant Scheme (Grant Number: 1001/PHUMANITI/ 8580014).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.L.T.; data curation, S.A.; formal analysis, S.A., M.L.T.; funding acquisition, M.L.T.; methodology, S.A.; supervision, M.L.T., N.S., J.T.A.; validation, S.A.; writing—original draft, S.A.; writing—review and editing, M.L.T., N.S., J.T.A., F.Z. All authors have read and agreed to the version of the manuscript.

Corresponding author

Correspondence to Mou Leong Tan.

Ethics declarations

Institutional review board statement

Not applicable.

Informed consent

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsalal, S., Tan, M.L., Samat, N. et al. Temperature and precipitation changes under CMIP6 projections in the Mujib Basin, Jordan. Theor Appl Climatol 155, 7703–7720 (2024). https://doi.org/10.1007/s00704-024-05087-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-024-05087-2

Navigation