Skip to main content

Advertisement

Log in

Investigating the relationship between urban sprawl and urban heat island using remote sensing and machine learning approaches

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Urbanization is triggering the expansion in an unplanned and unrestricted manner, growth of outward expansion for some areas. One such important environmental and ecological hazard in recent decades is urban heat island (UHI) and urban thermal field variation index (UTFVI). Studies employing temporal satellite imagery from 1991 to 2021 focused on the appraisal of spatiotemporal patterns of urbanization and UHI in West Bengal’s mid-sized cities (Medinipur and Kharagpur city). This study examines competencies of remote sensing (RS) and GIS procedures in empathetic heat effects and urban thermal conditions using Landsat datasets and GEE cloud software-based time-consuming conventional method. The change detection analysis revealed that built-up lands developed since 7.88–26.94% (1991–2021). The UHI’s highest value in 1991 is 4.57 and in 2021 it increased by 6.87%. The highest 0.34% UTFVI value is found in the year 1991, but in 2021, the highest value was shown at 0.35% in this study area. The mean NDVI value increased from 1991 (0.29%) to 2021 (0.44%). The land surface temperature (LST) maps have been prepared using Landsat 5 and Landsat 8 surface reflectance datasets. Anthropogenic-related ecological changes in urbanized areas are concerning these days since they have the potential to negatively impact both the environment and human health. The investigation has shown that while LULC alterations were sufficiently large, unplanned changes to it can have a detrimental effect on the environment. Investigation established an operative systematic methods application to measure urbanization appearances and urban thermal conditions in Medinipur and Kharagpur city.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be supplied upon request from corresponding author.

References 

  • Abutaleb K, Ngie A, Darwish A, Ahmed M, Arafat S, Ahmed F (2015) Assessment of urban heat island using remotely sensed imagery over Greater Cairo, Egypt. Adv Remote Sens 04(01):35–47. https://doi.org/10.4236/ars.2015.41004

    Article  Google Scholar 

  • Ahmed S (2018) Assessment of urban heat islands and impact of climate change on socioeconomic over Suez Governorate using remote sensing and GIS techniques. Egypt J Remote Sens Space Sci 21(1):15–25. https://doi.org/10.1016/j.ejrs.2017.08.001

    Article  Google Scholar 

  • Al-Dail MA (1998) Change detection in urban areas using satellite data. J King Saud University - Eng Sci 10(2):217–227. https://doi.org/10.1016/s1018-3639(18)30697-4

    Article  Google Scholar 

  • As-syakur AR, Adnyana IWS, Arthana IW, Nuarsa IW (2012) Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area. Remote Sens 4(10):2957–2970. https://doi.org/10.3390/rs4102957

    Article  Google Scholar 

  • Balew A, Korme T (2020) Monitoring land surface temperature in Bahir Dar city and its surrounding using Landsat images. Egypt J Remote Sens Space Sci 23(3):371–386. https://doi.org/10.1016/j.ejrs.2020.02.001

    Article  Google Scholar 

  • Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Davidson O, ... Yohe G (2008) Climate change 2007: synthesis report: an assessment of the intergovernmental panel on climate change

  • Bhatta B, Saraswati S, Bandyopadhyay D (2010) Urban sprawl measurement from remote sensing data. Appl Geogr 30(4):731–740. https://doi.org/10.1016/j.apgeog.2010.02.002

    Article  Google Scholar 

  • Chakraborty T, Hsu A, Manya D, Sheriff G (2020) A spatially explicit surface urban heat island database for the United States: characterization, uncertainties, and possible applications. ISPRS J Photogramm Remote Sens 168(August):74–88. https://doi.org/10.1016/j.isprsjprs.2020.07.021

    Article  Google Scholar 

  • Chen X-L, Zhao H-M, Li P-X, Yin Z-Y (2006) Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ 104(2):133–146. https://doi.org/10.1016/j.rse.2005.11.016

    Article  Google Scholar 

  • Chen F, Zhang M, Tian B, Li Z (2017) Extraction of glacial lake outlines in Tibet Plateau using Landsat 8 imagery and Google Earth Engine. IEEE J Sel Top Appl Earth Observ Remote Sens 10(9):4002–4009

    Article  Google Scholar 

  • Dewa DD, Buchori I, Sejati AW (2022) Assessing land use/land cover change diversity and its relation with urban dispersion using Shannon Entropy in the Semarang Metropolitan Region, Indonesia. Geocarto International 1–22. https://doi.org/10.1080/10106049.2022.2046871

  • Dong J, Xiao X, Menarguez MA, Zhang G, Qin Y, Thau D, Biradar C, Moore B 3rd (2016) Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens Environ 185:142–154. https://doi.org/10.1016/j.rse.2016.02.016

    Article  Google Scholar 

  • Fenta AA, Yasuda H, Haregeweyn N, Belay AS, Hadush Z, Gebremedhin MA, Mekonnen G (2017) The dynamics of urban expansion and land use/land cover changes using remote sensing and spatial metrics: the case of Mekelle City of northern Ethiopia. Int J Remote Sens 38(14):4107–4129. https://doi.org/10.1080/01431161.2017.1317936

    Article  Google Scholar 

  • Ferdosi BJ, Buddelmeijer H, Trager S, Wilkinson MHF, Roerdink JBTM (2010) Finding and visualizing relevant subspaces for clustering high-dimensional astronomical data using connected morphological operators. In 2010 IEEE Symposium on Visual Analytics Science and Technology. IEEE. https://doi.org/10.1109/vast.2010.5652450

  • Fontanelli M, Pirchio M, Halder B, Bandyopadhyay J, Ali Al-Hilali A, Ahmed AM, Falah MW, Ali Abed S, Falih KT, Mohamed Khedher K, Scholz M, Mundher Yaseen Z (2022) Assessment of urban green space dynamics influencing the surface urban heat stress using advanced geospatial techniques. https://doi.org/10.3390/agronomy12092129

  • Ghosh M, Ghosal S (2019) Historical geography of forestry and forest culture in sub-himalayan west Bengal, 1757–2015. Space Cult India 6(5):215–227

    Article  Google Scholar 

  • Ghute BB, Shaikh MB, Halder B (2023) Impact assessment of natural and anthropogenic activities using remote sensing and GIS techniques in the Upper Purna River basin, Maharashtra, India. Model Earth Syst Environ 9(2):1507–1522. https://doi.org/10.1007/s40808-022-01576-3

  • Gohain KJ, Mohammad P, Goswami A (2021) Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. Quatern Int 575:259–269

    Article  Google Scholar 

  • Gorelick N (2013) Google earth engine. EGU General Assem Conf Abstr 15:11997

    Google Scholar 

  • Grimmond SUE (2007) Urbanization and global environmental change: local effects of urban warming. Geogr J 173(1):83–88. https://doi.org/10.1111/j.1475-4959.2007.232_3.x

    Article  Google Scholar 

  • Guha S, Govil H, Dey A, Gill N (2018) Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. Eur J Remote Sens 51(1):667–678

    Article  Google Scholar 

  • Guha S, Govil H, Besoya M (2020) An investigation on seasonal variability between LST and NDWI in an urban environment using Landsat satellite data. Geomat Nat Haz Risk 11(1):1319–1345. https://doi.org/10.1080/19475705.2020.1789762

    Article  Google Scholar 

  • Guha S (2021) Estimating the seasonal relationship between land surface temperature and normalized difference bareness index using Landsat data series. Int J Eng Geosci. https://doi.org/10.26833/ijeg.833260

  • Gupta K, Mukhopadhyay A, Giri S, Chanda A, Datta Majumdar S, Samanta S, Mitra D, Samal RN, Pattnaik AK, Hazra S (2018) An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX 5:1129–1139. https://doi.org/10.1016/j.mex.2018.09.011

    Article  Google Scholar 

  • Hassan MM (2017) Monitoring land use/land cover change, urban growth dynamics and landscape pattern analysis in five fastest urbanized cities in Bangladesh. Remote Sens Appl: Society and Environment 7:69–83. https://doi.org/10.1016/j.rsase.2017.07.001

    Article  Google Scholar 

  • Jamei M, Ali M, Malik A, Karbasi M, Sharma E, Yaseen ZM (2022a) Air quality monitoring based on chemical and meteorological drivers: application of a novel data filtering-based hybridized deep learning model. J Clean Prod 374:134011

    Article  CAS  Google Scholar 

  • Jamei M, Karbasi M, Alawi OA, Kamar HM, Khedher KM, Abba SI, Yaseen ZM (2022b) Earth skin temperature long-term prediction using novel extended Kalman filter integrated with Artificial Intelligence models and information gain feature selection. Sustain Comput: Informatics and Systems 35:100721

    Google Scholar 

  • Jensen R, Mausel P, Dias N, Gonser R, Yang C, Everitt J, Fletcher R (2007) Spectral analysis of coastal vegetation and land cover using AISA+ hyperspectral data. Geocarto Int 22(1):17–28. https://doi.org/10.1080/10106040701204354

    Article  Google Scholar 

  • Kafy A-A, Rahman MS, Islam M, Al Rakib A, Islam MA, Khan MHH, Sikdar MS, Sarker MHS, Mawa J, Sattar GS (2021) Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustain Cities Soc 64:102542

    Article  Google Scholar 

  • Karimi A, Mohammad P, Gachkar S, Gachkar D, García-Martínez A, Moreno-Rangel D, Brown RD (2021) Surface urban heat island assessment of a cold desert city: a case study over the Isfahan Metropolitan Area of Iran. Atmosphere 12(10):1368

    Article  Google Scholar 

  • Karl TR, Diaz HF, Kukla G (1988) Urbanization: its detection and effect in the United States climate record. J Clim 1(11):1099–1123. https://doi.org/10.1175/1520-0442(1988)001%3c1099:uidaei%3e2.0.co;2

    Article  Google Scholar 

  • Keim DA, Hao MC, Dayal U, Janetzko H, Bak P (2009) Generalized scatter plots. Inf vis 9(4):301–311. https://doi.org/10.1057/ivs.2009.34

    Article  Google Scholar 

  • Khaleefa O, Kamel AH (2021) On The evaluation of water quality index: case study of Euphrates River, Iraq. Knowl-Based Eng Sci 2(2):35–43

    Article  Google Scholar 

  • Khedher KM, Abu-Taweel GM, Al-Fifi Z, Qoradi MD, Al-Khafaji Z, Halder B, Bandyopadhyay J, Shahid S, Essaied L, Yaseen ZM (2022) Farasan Island of Saudi Arabia confronts the measurable impacts of global warming in 45 years. Sci Rep 12(1):1–20

    Article  Google Scholar 

  • Lamine D (2020) Technical and economic feasibility of solar irrigation pumping system: a review. Knowl-Based Eng Sci 1(01):1–22

    Article  Google Scholar 

  • Legg CA (1987a) Review of:“Remote Sensing and Image Interpretation” By T. M. Lillesand and R. W. Kiefer. (Chichester: John Wiley & Sons, 1987.) [Pp. 721.] Price £48–20. Int J Remote Sens 8(12):1847. https://doi.org/10.1080/01431168708954824

  • Legg CA (1987b) Review of:“Remote Sensing and Image Interpretation” By T. M. LILLESAND and R. W. KIEFER. (Chichester: John Wiley & Sons, 1987.) [Pp. 721.] Price £48–20. Int J Remote Sens 8(12):1847. https://doi.org/10.1080/01431168708954824

  • Li X, Zhou Y, Zhu Z, Liang L, Yu B, Cao W (2018) Mapping annual urban dynamics (1985–2015) using time series of Landsat data. Remote Sens Environ 216:674–683. https://doi.org/10.1016/j.rse.2018.07.030

    Article  Google Scholar 

  • Liu L, Zhang Y (2011) Urban heat island analysis using the landsat TM data and ASTER Data: a case study in Hong Kong. Remote Sens 3(7):1535–1552. https://doi.org/10.3390/rs3071535

    Article  Google Scholar 

  • Lowen AC, Mubareka S, Steel J, Palese P (2007) Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog 3(10):1470–1476. https://doi.org/10.1371/journal.ppat.0030151

    Article  CAS  Google Scholar 

  • McFeeters SK (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432. https://doi.org/10.1080/01431169608948714

    Article  Google Scholar 

  • McFeeters S (2013) Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: a practical approach. Remote Sens 5(7):3544–3561. https://doi.org/10.3390/rs5073544

    Article  Google Scholar 

  • Mehr AD, Akdegirmen O (2021) Estimation of urban imperviousness and its impacts on flashfloods in Gazipaşa, Turkey. Knowl-Based Eng Sci 2(1):9–17

    Article  Google Scholar 

  • Mohammad P, Goswami A (2021) Quantifying diurnal and seasonal variation of surface urban heat island intensity and its associated determinants across different climatic zones over Indian cities. Gisci Remote Sens 00(00):1–27. https://doi.org/10.1080/15481603.2021.1940739

    Article  Google Scholar 

  • Mohammad P, Goswami A, Bonafoni S (2019) The impact of the land cover dynamics on surface urban heat island variations in semi-arid cities : a case study in Ahmedabad City, India, using multi-sensor/source data. Sensors 19(17):3701. https://doi.org/10.3390/s19173701

    Article  Google Scholar 

  • Mohtar WHMW, Maulud KNA, Muhammad NS, Sharil S, Yaseen ZM (2019) Spatial and temporal risk quotient based river assessment for water resources management. Environ Pollut 248:133–144

    Article  Google Scholar 

  • Naikoo MW, Islam ARMT, Mallick J, Rahman A (2022) Land use/land cover change and its impact on surface urban heat island and urban thermal comfort in a metropolitan city. Urban Clim 41:101052

    Article  Google Scholar 

  • Oke TR, Cleugh HA (1987) Urban heat storage derived as energy balance residuals. Bound-Layer Meteorol 39(3):233–245. https://doi.org/10.1007/bf00116120

    Article  Google Scholar 

  • Orimoloye IR, Mazinyo SP, Nel W, Kalumba AM (2018) Spatiotemporal monitoring of land surface temperature and estimated radiation using remote sensing: human health implications for East London, South Africa. Environ Earth Sci 77(3). https://doi.org/10.1007/s12665-018-7252-6

  • Patra S, Sahoo S, Mishra P, Mahapatra SC (2018) Impacts of urbanization on land use /cover changes and its probable implications on local climate and groundwater level. J Urban Manag 7(2):70–84. https://doi.org/10.1016/j.jum.2018.04.006

    Article  Google Scholar 

  • Qutbudin I, Shiru MS, Sharafati A, Ahmed K, Al-Ansari N, Yaseen ZM, Shahid S, Wang X (2019) Seasonal drought pattern changes due to climate variability: case study in Afghanistan. Water 11(5):1096

    Article  Google Scholar 

  • Ramadan E, Feng X, Cheng Z (2004) Satellite remote sensing for urban growth assessment in Shaoxing City, Zhejiang Province. J Zhejiang University-Sci A 5(9):1095–1101. https://doi.org/10.1631/jzus.2004.1095

    Article  Google Scholar 

  • Rawat JS, Kumar M (2015) Monitoring land use/cover change using remote sensing and GIS techniques: a case study of Hawalbagh block, district Almora, Uttarakhand, India. Egypt J Remote Sens Space Sci 18(1):77–84. https://doi.org/10.1016/j.ejrs.2015.02.002

    Article  Google Scholar 

  • Sahani S, Raghavaswamy V (2018) Analyzing urban landscape with City Biodiversity Index for sustainable urban growth. Environ Monit Assess 190(8). https://doi.org/10.1007/s10661-018-6854-5

  • Salman SA, Shahid S, Afan HA, Shiru MS, Al-Ansari N, Yaseen ZM (2020) Changes in climatic water availability and crop water demand for Iraq region. Sustainability 12(8):3437

    Article  Google Scholar 

  • Sanikhani H, Kisi O, Maroufpoor E, Yaseen ZM (2019) Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios. Theoret Appl Climatol 135(1):449–462

    Article  Google Scholar 

  • Sarif MO, Ranagalage M, Gupta RD, Murayama Y (2022) Monitoring urbanization induced surface urban cool island formation in a South Asian Megacity: a case study of Bengaluru, India (1989–2019). Front Ecol Evol 10:901156

    Article  Google Scholar 

  • Scarano M, Sobrino JA (2015) On the relationship between the sky view factor and the land surface temperature derived by Landsat-8 images in Bari, Italy. Int J Remote Sens 36(19–20):4820–4835

    Article  Google Scholar 

  • Sejati AW, Buchori I, Rudiarto I (2019) The spatio-temporal trends of urban growth and surface urban heat islands over two decades in the Semarang Metropolitan Region. Sustain Cities Soc 46:101432

    Article  Google Scholar 

  • Shafizadeh-Moghadam H, Helbich M (2015) Spatiotemporal variability of urban growth factors: a global and local perspective on the megacity of Mumbai. Int J Appl Earth Obs Geoinf 35:187–198. https://doi.org/10.1016/j.jag.2014.08.013

    Article  Google Scholar 

  • Shahfahad, Bindajam AA, Naikoo MW, Horo JP, Mallick J, Rihan M, ... Rahman A (2023) Response of soil moisture and vegetation conditions in seasonal variation of land surface temperature and surface urban heat island intensity in sub-tropical semi-arid cities. Theor Appl Climatol 1–29. https://doi.org/10.1007/s00704-023-04477-2

  • Simwanda M, Murayama Y (2018) Spatiotemporal patterns of urban land use change in the rapidly growing city of Lusaka, Zambia: implications for sustainable urban development. Sustain Cities Soc 39:262–274. https://doi.org/10.1016/j.scs.2018.01.039

    Article  Google Scholar 

  • Singh S, Singh H, Sharma V, Shrivastava V, Kumar P, Kanga S, Sahu N, Meraj G, Farooq M, Singh SK (2022) Impact of forest fires on air quality in Wolgan Valley, New South Wales, Australia—a mapping and monitoring study using Google Earth Engine. Forests 13(1):4

    Article  Google Scholar 

  • Tahir Ata-Ul-Karim S, Malghani S, Ishaq Asif Rehmani M, Halder B, Bandyopadhyay J, Abdulmohsin Afan H, Naser MH, Ali Abed S, Mohamed Khedher K, Falih KT, Deo R, Scholz M, Mundher Yaseen Z (2022) Delineating the crop-land dynamic due to extreme environment using Landsat datasets: a case study. Agronomy 2022(12):1268. https://doi.org/10.3390/agronomy12061268

    Article  CAS  Google Scholar 

  • Talukdar S, Rihan M, Hang HT, Bhaskaran S, Rahman A (2022) Modelling urban heat island (UHI) and thermal field variation and their relationship with land use indices over Delhi and Mumbai metro cities. Environ Dev Sustain 24(3):3762–3790

    Article  Google Scholar 

  • Tamiminia H, Salehi B, Mahdianpari M, Quackenbush L, Adeli S, Brisco B (2020) Google Earth Engine for geo-big data applications: a meta-analysis and systematic review. ISPRS J Photogramm Remote Sens 164:152–170

    Article  Google Scholar 

  • Tao H, Hashim BM, Heddam S, Goliatt L, Tan ML, Sa’adi Z, ... Yaseen ZM (2023) Megacities’ environmental assessment for Iraq region using satellite image and geo-spatial tools. Environ Sci Pollut Res 30(11):30984–31034. https://doi.org/10.1007/s11356-022-24153-8

  • Tarawally M, Xu W, Hou W, Mushore T (2018) Comparative analysis of responses of land surface temperature to long-term land use/cover changes between a coastal and inland city: a case of Freetown and Bo Town in Sierra Leone. Remote Sens 10(1):112. https://doi.org/10.3390/rs10010112

    Article  Google Scholar 

  • Thapa R, Gupta S, Guin S, Kaur H (2017) Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal. Appl Water Sci 7(7):4117–4131. https://doi.org/10.1007/s13201-017-0571-z

    Article  Google Scholar 

  • Tomlinson CJ, Chapman L, Thornes JE, Baker CJ (2011) Including the urban heat island in spatial heat health risk assessment strategies: a case study for Birmingham. UK Int J Health Geogr 10(1):1–14

    Google Scholar 

  • Vani M, Prasad PRC (2019) Assessment of spatio-temporal changes in land use and land cover, urban sprawl, and land surface temperature in and around Vijayawada city, India. Environ Dev Sustain 22(4):3079–3095. https://doi.org/10.1007/s10668-019-00335-2

    Article  Google Scholar 

  • Vinayak B, Lee HS, Gedam S, Latha R (2022) Impacts of future urbanization on urban microclimate and thermal comfort over the Mumbai metropolitan region. India Sustain Cities Soc 79:103703

    Article  Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86(3):370–384. https://doi.org/10.1016/S0034-4257(03)00079-8

    Article  Google Scholar 

  • Wemegah CS, Yamba EI, Aryee JNA, Sam F, Amekudzi LK (2020) Assessment of urban heat island warming in the greater accra region. Sci African 8:e00426. https://doi.org/10.1016/j.sciaf.2020.e00426

    Article  Google Scholar 

  • Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483. https://doi.org/10.1016/j.rse.2003.11.005

    Article  Google Scholar 

  • Wu H, Ye L-P, Shi W-Z, Clarke KC (2014) Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China. Int J Appl Earth Obs Geoinf 32:67–78

    Google Scholar 

  • Yang L, Qian F, Song D-X, Zheng K-J (2016) Research on urban heat-island effect. Procedia Eng 169:11–18

    Article  Google Scholar 

  • Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594. https://doi.org/10.1080/01431160304987

    Article  Google Scholar 

  • Zhang Y, Odeh IOA, Han C (2009) Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int J Appl Earth Obs Geoinf 11(4):256–264

    Google Scholar 

  • Zhang Q, Schaaf C, Seto KC (2013) The vegetation adjusted NTL urban index: a new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens Environ 129:32–41. https://doi.org/10.1016/j.rse.2012.10.022

    Article  Google Scholar 

  • Zhou D, Xiao J, Bonafoni S, Berger C, Deilami K, Zhou Y, Frolking S, Yao R, Qiao Z, Sobrino J (2018) Satellite remote sensing of surface urban heat islands: progress, challenges, and perspectives. Remote Sens 11(1):48. https://doi.org/10.3390/rs11010048

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Vidyasagar University for this research opportunity and truly thankful for local government body for field survey and data collection.

Author information

Authors and Affiliations

Authors

Contributions

Biswarup Rana: conceptualization; data curation; formal analysis; investigation; software; visualization; writing—original draft, review and editing draft preparation; resources. Jatisankar Bandyopadhyay: supervision, investigation; visualization; writing—original draft, review and editing draft preparation Bijay Halder: conceptualization; data curation; formal analysis; methodology; supervision, investigation; project administration; software; visualization; writing—original draft, review and editing draft preparation.

Corresponding author

Correspondence to Bijay Halder.

Ethics declarations

Ethics approval

The manuscript is conducted within the ethical manner advised by the targeted journal.

Consent to participate

Not applicable.

Consent for publication

The research is scientifically consented to be published.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5241 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, B., Bandyopadhyay, J. & Halder, B. Investigating the relationship between urban sprawl and urban heat island using remote sensing and machine learning approaches. Theor Appl Climatol 155, 4161–4188 (2024). https://doi.org/10.1007/s00704-024-04874-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-024-04874-1

Navigation