Skip to main content

Advertisement

Log in

Modeling of grassland biomass and evaluation of uncertainties caused by differences in frozen soil type on the Qinghai Plateau

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Global warming has caused changes in the area and thickness of permafrost on the Qinghai-Tibet Plateau and prompted the transition from permafrost to seasonally frozen soil, which has affected the soil moisture, soil temperature, and distribution of plant roots. This, in turn, affects grassland vegetation productivity and aboveground/belowground biomass. In this study, we took Qinghai Province in the northeastern Qinghai-Tibet Plateau as the research area to model the spatial pattern of grassland biomass and then evaluated the potential influence of frozen soil type information on aboveground and belowground biomass. Our research shows that there are significantly more biomass observations in seasonally frozen soil regions than in permafrost regions. However, when we ignore the type of frozen soil, the model does not show more accurate simulation in seasonally frozen soil regions, mainly because the stronger correlation between permafrost biomass and environmental factors, such as precipitation, compensates for the lack of observational data. In addition, we found that the biomass estimation error can be reduced significantly by building different models for each type of frozen soil, which implies that the type of frozen soil has an important impact on grassland biomass. Therefore, in considering the effects of future climate warming, more attention should be given to the impact of changes in frozen soil type on regional vegetation productivity. In addition, our investigation contributes a benchmark dataset of above- and belowground vegetation carbon storage in different frozen soil types, which provides the research community with useful information for optimizing process-based carbon cycle models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data and material analyzed in this study are available from the corresponding author upon reasonable request.

Code availability

The main data process is done using the corrplot and randomForest packet in R3.5.1. R code available on request from the authors.

References

  • Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rodenbeck C, Arain MA, Baldocchi D, Bonan GB, Bondeau A, Cescatti A, Lasslop G, Lindroth A, Lomas M, Luyssaert S, Margolis H, Oleson KW, Roupsard O et al (2010) Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329(5993):834–838

    Article  Google Scholar 

  • Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletskiy DA, Schoeneich P, Romanovsky VE, Lewkowicz AG, Abramov A, Allard M, Boike J, Cable WL, Christiansen HH, Delalove R, Diekmann B, Drozdov D, Etzelmiller B, Grosse G et al (2019) Permafrost is warming at a global scale. Nat Commun 10:264

    Article  Google Scholar 

  • Blume-Werry G, Milbau A, Teuber LM, Johansson M, Dorrepaal E (2019) Dwelling in the deep–Strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost. New Phytol 223(3):1328–1339

    Article  Google Scholar 

  • Chen H, Zhu Q, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR et al (2013) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Change Biol 19(10):2940–2955

    Article  Google Scholar 

  • Chen Y, Feng JG, Yuan X, Zhu B (2020) Effects of warming on carbon and nitrogen cycling in alpine grassland ecosystems on the Tibetan Plateau: a meta-analysis. Geoderma 370:114363

    Article  Google Scholar 

  • Chen Y, Xia J, Liang S, Feng J, Fisher J, Li X, Li X, Liu S, Ma Z, Miyata A (2014) Comparison of satellite-based evapotranspiration mdoels over terrestrial ecosystem in China. Remote Sens Environ 140:279–293

    Article  Google Scholar 

  • Cheng GD, Wu TH (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res 112(F2):F02S03

    Article  Google Scholar 

  • Dobinski W (2011) Permafrost. Earth Sci Rev 108(3-4):158–169

    Article  Google Scholar 

  • Evans SG, Ge S (2017) Contrasting hydrogeologic responses to warming in permafrost and seasonally frozen ground hillslopes. Geophys Res Lett 44(4):1803–1813

    Article  Google Scholar 

  • Fayiah M, Dong S, Li Y, Xu Y, Wessell K (2019) The relationships between plant diversity, plant cover, plant biomass and soil fertility vary with grassland type on Qinghai-Tibetan Plateau. Agric Environ 286:106659

    Article  Google Scholar 

  • Gao XX, Dong SK, Li S, Xu YD, Liu SL, Zhao HD, Yeomans J, Li Y, Shen H, Wu SN, Zhi YL (2020) Using the random forest model and validated MODIS with the field spectrometer measurement promote the accuracy of estimating aboveground biomass and coverage of alpine grasslands on the Qinghai-Tibetan Plateau. Ecol Indic 112:106114

    Article  Google Scholar 

  • Guo D, Wang H, Li D (2012) A projection of permafrost degradation on the Tibetan Plateau during the 21st century. Journal of Geophysical Research Atmospheres 117(D5):D05106

    Article  Google Scholar 

  • Hengl T, Mendes de Jesus J, Heuvelink GB, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Guevara MA (2017) SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12(2):e0169748

    Article  Google Scholar 

  • Jia YL, Wang QF, Zhu JX, Chen Z, He NP, Yu GR (2018) Dataset of spatial pattern of atmospheric nitrogen deposition in China from 1996 to 2015[DB/OL]. Science Data Bank.

    Google Scholar 

  • Jiang H, Zhang W, Yi Y, Yang K, Li G, Wang G (2018) The impacts of soil freeze/thaw dynamics on soil water transfer and spring phenology in the Tibetan Plateau. Arct Antarct Alp Res 50(1):e1439155

    Article  Google Scholar 

  • Jiang YB, Tao J, Huang YQ, Zhu JT, Tian L, Zhang YJ (2015) The spatial pattern of grassland aboveground biomass on Xizang Plateau and its climatic controls. J. Plant Ecol 8(1):30–40

    Article  Google Scholar 

  • Jin H, He R, Cheng G, Wu Q, Wang S, Lü LZ, Chang XL (2009) Changes in frozen ground in the source area of the yellow river on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environ Res Lett 4(4):045206

    Article  Google Scholar 

  • Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD, Arain MA, Arneth A, Bernhofer C, Bonal D, Chen JQ, Gianelle D, Gobron N, Kiely G, Kutsch W, Lasslop G, Law BE, Lindroth A, Merbold L, Montagnani L et al (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res 116:G00J07

    Article  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(7580):60–68

    Article  Google Scholar 

  • Li KH, Liu XJ, Ling S (2015) Response of alpine grassland to elevated nitrogen deposition and water supply in China. Oecologia 177(1):65–72

    Article  Google Scholar 

  • Li X, Xiao J (2019) A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens 11(5):517

    Article  Google Scholar 

  • Liu SL, Zhang FW, Du YG, Guo XW, Lin L, Li YK, Li Q, Gao GM (2016) Ecosystem carbon storage in alpine grassland on the Qinghai Plateau. PloS ONE 11(8):e0160420

    Article  Google Scholar 

  • Liu X, Liu J, Chen S, Chen J, Chen F (2020) New insights on Chinese cave δ18o records and their paleoclimatic significance. Earth-Sci Rev 207:103216

    Article  Google Scholar 

  • Ma A, He N, Yu G, Wen D, Peng S (2016) Carbon storage in Chinese grassland ecosystems: influence of different integrative methods. Sci Rep 6:21378

    Article  Google Scholar 

  • Ma M, Yuan W, Jie D, Zhang F, Li H (2017a) Large-scale estimates of gross primary production on the Qinghai-Tibet Plateau based on remote sensing data. Int J Digital Earth 11(11):1–18

    Google Scholar 

  • Ma Q, Kuang WN, Liu ZM, Hu FL, Qian JQ, Liu B, Zhu JL, Cao CY, Wu J, Li XH, Zhou QL, Kou ZW, Shou WK (2017b) Spatial pattern of different component carbon in varied grasslands of northern China. Geoderma 303:27–36

    Article  Google Scholar 

  • Mcpherson JM, Jetz W, Rogers DJ (2004) The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol 41(5):811–823

    Article  Google Scholar 

  • Mu CC, Li LL, Zhang F, Li YX, Xiao XX, Zhao Q, Zhang TJ (2018) Impacts of permafrost on above- and belowground biomass on the northern Qinghai-Tibetan Plateau. Arct Antarct Alp Res 50(1):e144192

    Article  Google Scholar 

  • Niu FJ, Zheng H, Li A (2018) Map of the frozen ground in the Tibetan Plateau (2003). National Tibetan Plateau Data Center

    Google Scholar 

  • Piao SL, Fang JY, He JS, Xiao Y (2004) Spatial distribution of grassland biomass in China. Acta Phtoecol Sinica 28(4):491–498

    Google Scholar 

  • Piao SL, Zhang XZ, Wang T, Liang EY, Wang SP, Zhu JT, Niu B (2019) Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chin Sci Bull 64(27):2842–2855

    Article  Google Scholar 

  • Ran YH, Ma HQ (2016) 1 km Plant Functional Types Map over China in 2000. Remote Sens Technol Application 31(4):827–832

    Google Scholar 

  • Schuur EAG, Bockheim J, Canadell JG, Euskirchen E, Field CB, Goryachkin SV, Hagemann S, Kuhry P, Lafleur PM, Lee H, Mazhitova G, Nelson FE, Rinke A, Remanovsky VE, Shiklomanov N, Tarnocai C, Venevsky S, Vogel JG, Zimov SA (2008) Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience 58(8):701–714

    Article  Google Scholar 

  • Schuur EAG, McGuire AD, Schadel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520(7546):171–179

    Article  Google Scholar 

  • Shen H, Dong SK, Li S, Xiao JN, Han YH, Yang MY, Zhang J, Gao XX, Xu YD, Li Y, Zhi YL, Liu SL, Dong QM, Zhou HK, Yeomans JC (2019) Effects of simulated n deposition on photosynthesis and productivity of key plants from different functional groups of alpine meadow on Qinghai-Tibetan Plateau. Environ Pollut 251:731–737

    Article  Google Scholar 

  • Spawn SA, Sullivan CC, Lark TJ, Gibbs HK (2020) Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci Data 7(1):112

    Article  Google Scholar 

  • Sun J, Cheng GW, Li WP, Sha YK, Yang YC (2013) On the variation of ndvi with the principal climatic elements in the Tibetan Plateau. Remote Sens 5(4):1894–1911

    Article  Google Scholar 

  • Suonan J, Classen AT, Sanders NJ, He JS (2019) Plant phenological sensitivity to climate change on the Tibetan Plateau and relative to other areas of the world. Ecosphere 10(1):e02543

    Article  Google Scholar 

  • Wang R, Dong ZB, Zhou ZC (2020) Different responses of vegetation to frozen ground degradation in the source region of the Yellow River from 1980 to 2018. Chinese Geograph Sci 30(4):557–571

    Article  Google Scholar 

  • Wang TY, Wu TH, Wang P, Li R, Xie CW, Zou DF (2019a) Spatial distribution and changes of permafrost on the Qinghai-Tibet Plateau revealed by statistical models during the period of 1980 to 2010. Sci Total Environ 650:661–670

    Article  Google Scholar 

  • Wang TY, Yang DW, Fang BJ, Yang WC, Qin Y, Wang YH (2019b) Data-driven mapping of the spatial distribution and potential changes of frozen ground over the Tibetan Plateau. Sci Total Environ 649:515–525

    Article  Google Scholar 

  • Wu Q, Hou Y, Yun H, Liu Y (2015) Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China. Glob Planet Change 124:149–155

    Article  Google Scholar 

  • Wu XH, Li HX, Fu BJ, Jin TT, Liu GH (2013) Study on soil characteristics of alpine grassland in different degradation levels in Headwater Regions of Three Rivers in China. Chinese J Grassland 35(3):77–84

    Google Scholar 

  • Xia JZ, Ma MN, Liang TG, Wu CY, Yang YH, Zhang L, Zhang YJ, Yuan WP (2018) Estimates of grassland biomass and turnover time on the Tibetan Plateau. Environ Res Lett 13(1):014020

    Article  Google Scholar 

  • Xu L, Yu GR, He NP, Wang QF, Gao Y, We D, Li SG, Niu SL, Ge JP (2018) Carbon storage in china’s terrestrial ecosystems: a synthesis. Sci Rep 8:2806

    Article  Google Scholar 

  • Xu XM, Wu QB (2019) Impact of climate change on allowable bearing capacity on the Qinghai-Tibetan Plateau. Adv Clim Change Res 10(2):99–10

    Article  Google Scholar 

  • Xue X, Guo J, Han BSA, Sun QW, Liu LC (2009) The effect of climate warming and permafrost thaw on desertification in the Qinghai–Tibetan Plateau. Geomorphology 108(3-4):182–190

    Article  Google Scholar 

  • Yang YH, Fang JY, Pan YD, Ji CJ (2009) Aboveground biomass in Tibetan grasslands. J Arid Environ 73(1):91–95

    Article  Google Scholar 

  • Yi SH, Zhou ZY, Ren SL, Xu M, Qin Y, Chen SY, Ye BS (2011) Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai–Tibetan Plateau. Environ Res Lett 6(4):045403

    Article  Google Scholar 

  • Yuan WP, Cai WW, Chen Y, Liu SG, Dong WJ, Zhang HC, Yu GR, Chen ZQ, He HL, Guo WD, Liu D, Liu SM, Xiang WH, Xie ZH, Zhao ZH, Zhou GM (2016) Severe summer heatwave and drought strongly reduced carbon uptake in Southern China. Sci Rep 6:18813

    Article  Google Scholar 

  • Zeng N, Ren XL, He HL, Zhang L, Zhao D, Ge R, Li P, Niu ZE (2019) Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm. Ecol Indic 102:479–487

    Article  Google Scholar 

  • Zhao H, Huang W, Xie TT, Wu X, Xie YW, Feng S, Chen FH (2019b) Optimization and evaluation of a monthly air temperature and precipitation gridded dataset with a 0.025° spatial resolution in china during 1951–2011. Theor Appl Climatol 138(1-2):491–507

    Article  Google Scholar 

  • Zhao HF, Li XD, Zhang D, Xiao RX (2020) Aboveground biomass in grasslands in Qinghai Province estimated from MODIS data and its influencing factors. Acta Pratac Sinica 29(12):5–16

    Google Scholar 

  • Zhao JX, Luo TX, Wei HX, Deng ZH, Tang YH (2019a) Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe. Agric For Meteorol 279:107761

    Article  Google Scholar 

  • Zheng GH, Yang YT, Yang DW, Dafflon B, Yi YH, Zhang SL, Chen DL, Gao B, Wang TH, Shi RJ, Wu QB (2020) Remote sensing spatiotemporal patterns of frozen soil and the environmental controls over the Tibetan Plateau during 2002–2016. Remote Sens Environ 247:111927

    Article  Google Scholar 

  • Zhou ZY, Yi SH, Chen JJ, Ye BS, Yu S, Wang GX, Ding YJ (2015) Responses of alpine grassland to climate warming and permafrost thawing in two basins with different precipitation regimes on the Qinghai-Tibetan Plateaus. Arct Antarct Alp Res 47(1):125–131

    Article  Google Scholar 

  • Zhuang Q, He J, Lu Y, Ji L, Xiao J, Luo T (2010) Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical model. Glob Ecol Biogeogr 19(5):649–662

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the high-performance computing support from the Center for Geodata and Analysis, Faculty of Geographical Science, Beijing Normal University (https://gda.bnu.edu.cn/).

Funding

This work was supported by the second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0405), the Key Special Foundation/Project of Science and Technology Department of Qinghai Province (Grant No. 2019-SF-A12), and the National Natural Science Foundation of China (42277206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhou.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

The authors whose names appear on the submission have contributed sufficiently to the scientific work and, therefore, share collective responsibility and accountability for the results.

Consent for publication

Consent to submit has been received from all the co-authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhou, T., Shi, P. et al. Modeling of grassland biomass and evaluation of uncertainties caused by differences in frozen soil type on the Qinghai Plateau. Theor Appl Climatol 154, 1309–1322 (2023). https://doi.org/10.1007/s00704-023-04620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-023-04620-z

Keywords

Navigation