Skip to main content

Advertisement

Log in

Local-scale regionalisation of climate change effects on rainfall pattern: application to Alicante City (Spain)

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Understanding the future patterns of precipitation behaviour in unique geographical areas, largely determined by their orography and local scale, can help lay the foundations for a new precipitation model for the design of the city’s main urban drainage infrastructures (intensity-duration-frequency curves, mathematical functions that relate precipitation intensity to duration and frequency of occurrence, hereafter IDF, for the short-, medium- and long-term future). This will definitely contribute to the improvement of the city’s resilience to the effects of climate change. In this paper, the projections of a subset of climate change models from both the sixth phase of the Coupled Model Intercomparison Project (CMIP6; with a total of 5 simulations) and Euro-CORDEX (for a set of 51 simulations) have been adjusted to the municipality of Alicante (in the southeast of Spain), using the Climadjust tool (climadjust.com). These projections contain different climatic variables. The rainfall variable has been used to derive a new framework of boundary conditions to help design more resilient infrastructure for torrential rainfall events and urban flooding. The projections corresponding to three climate change scenarios (CMIP6: SSP1-2.6, SSP2-4.5, SSP5-8.5; and Euro-CORDEX: RCP2.6, RCP4.5, RCP8.5) are considered with daily resolution and, by applying statistical techniques of temporal disaggregation (by means of a cascade model), hourly (and sub-hourly, reaching 30-min resolution) disaggregation. The results at hourly and 30-min resolutions are used to construct IDF curves of future climate, grouped into short-term (years 2015 to 2040), medium-term (years 2041 to 2070) and long-term (years 2071 to 2100) sub-scenarios. The selected future climate IDFs for an adverse climate change scenario (SSP2-4.5 and SSP5-8.5) show increases in rainfall intensities, higher the shorter the rainfall duration, for return periods greater than or equal to 25 years, whereas for return periods under 25 years the current IDFs can be representative of future scenarios. Current calculations and future projection of the torrentiality index for severe climate change scenarios, as well as the climate change factors, show an increase in the frequency and magnitude of the heaviest rainfall. This fact corroborates the hypotheses of greater general torrentiality in future rainfall in this specific area of the Spanish Mediterranean coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are not publicly available due to the fact that they have been generated within the research carried out in the company Aguas Municipalizadas de Alicante, but are available from the corresponding author on reasonable request.

References

  • Amblar Francés P, Casado Calle MJ, Pastor Saavedra A, Ramos Calzado P, Rodríguez Camino E (2017) Guía de escenarios regionalizados de cambio climático sobre España a partir de los resultados del IPCC-AR5. Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. Agencia Estatal de Meteorología. https://doi.org/10.31978/014-17-010-8

    Book  Google Scholar 

  • Arnbjerg-Nielsen K (2006) Significant climate change of extreme rainfall in Denmark. Water Sci Technol 54:1–8. https://doi.org/10.2166/wst.2006.572

    Article  Google Scholar 

  • Boucher O, Denvil S, Levavasseur G, Cozic A, Caubel A, Foujols MA, Meurdesoif Y, Cadule P, Devilliers M, Ghattas J, Lebas N, Lurton T, Mellul L, Musat I, Mignot J, Cheruy F (2018) IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.5195

    Book  Google Scholar 

  • Breinl K, Di Baldassarre G (2019) Space-time disaggregation of precipitation and temperature across different climates and spatial scales. J Hydrol: Reg Stud 21:126–146. https://doi.org/10.1016/j.ejrh.2018.12.002

    Article  Google Scholar 

  • Chazarra Bernabé A, Flórez García E, Peraza Sánchez B, Tohá Rebull T, Lorenzo Mariño B, Criado Pinto E, Moreno García JV, Romero Fresneda R, Botey Fullat R (2018) Mapas climáticos de España (1981-2010) y ETo (1996-2016). In: Área de climatología y aplicaciones operativas. Agencia estatal de meteorología (AEMET)

    Google Scholar 

  • Chen J, Brissette FP, Chaumont D, Braun M (2013) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49:4187–4205. https://doi.org/10.1002/wrcr.20331

    Article  Google Scholar 

  • Cutillas-Lozano LG (2015) Modelización Matemática de la Red de Alcantarillado de la Ciudad de Alicante. Aguas Municipalizadas de Alicante, E.M. y Universidad de Alicante, pp 66–81

    Google Scholar 

  • Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statis-tical correction according to observed values. Glob Planet Change 57:16–26. https://doi.org/10.1016/j.gloplacha.2006.11.030

    Article  Google Scholar 

  • Elías Castillo F, Y Ruiz Beltrán L (1979) Precipitaciones máximas en España. Edit. Instituto Nacional para la Conservación de la Naturaleza

    Google Scholar 

  • Etoh, T. y Murota, A. (1986). Sqrt-exponential type distribution of maximum. Hydrologic frequency modeling: proceedings of the international symposium on flood frequency and risk analyses. 14-17, Louisiana State, Baton rouge, USA. Edit. D. Reidel

  • Eum HI, Gupta A, Dibike Y (2020) Effects of univariate and multivariate statistical downscaling methods on climatic and hydrologic indicators for Alberta, Canada. J Hydrol 588:125065. https://doi.org/10.1016/j.jhydrol.2020.125065

    Article  Google Scholar 

  • Fernández J, Casanueva A, Montávez J, Gaertner MA, Casado MJ, Manzanas R, Gutiérrez J (2017) Regional climate projections over Spain: atmosphere. Future Climate Projections. In: Special Issue on climate over the Iberian Peninsula: an overview of CLIVAR-Spain coordinated science, vol 2017. CLIVAR Exchanges No. 73, pp 45–52

    Google Scholar 

  • Ferreira RN (2021) Cut-off lows and extreme precipitation in Eastern Spain: current and future climate. Atmosphere 12:835

    Article  Google Scholar 

  • Förster K, Hanzer F, Winter B, Marke T, Strasser U (2016) An open-source MEteoroLOgical observation time series DISaggregation Tool (MELODIST v0.1.1). Geosci Model Dev 9:2315–2333. https://doi.org/10.5194/gmd-9-2315-2016

    Article  Google Scholar 

  • Gil Olcina A, Olcina Cantos J, Rico Amorós AM (2004) Aguaceros, Aguaduchos e Inundaciones en Áreas Urbanas Alicantinas. Servicio de Publicaciones de la Universidad de Alicante

    Google Scholar 

  • Gómez Valentín M (2007) Hidrología Urbana. Institute for River Dynamics and Hydrological Engineering (FLUMEN). Universitat Politécnica de Barcelona

    Google Scholar 

  • Gutiérrez-López MA, Barragán-Regalado R (2019) Ajuste de curvas IDF a partir de tormentas de corta duración / intensity-duration-frequency curves on short duration storms. Tecnología Y Cienc Del Agua 10(6):1–24. https://doi.org/10.24850/j-tyca-2019-06-01

    Article  Google Scholar 

  • Hamed K, Rao AR (2000) Flood Frequency Analysis, 1st edn. CRC Press. https://doi.org/10.1201/9780429128813

    Book  Google Scholar 

  • IPCC (2021) In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate Change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 2391. https://doi.org/10.1017/9781009157896

    Chapter  Google Scholar 

  • IPCC (2022) In: Pörtner H-O, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, Craig M, Langsdorf S, Löschke S, Möller V, Okem A, Rama B (eds) Climate Change 2022: impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge University Press, Cambridge, UK and New York, NY, USA, p 3056. https://doi.org/10.1017/9781009325844

    Chapter  Google Scholar 

  • Jungclaus J, Bittner M, Wieners KH, Wachsmann F, Schupfner M, Legutke S, Giorgetta M, Reick C, Gayler V, Haak H, de Vrese P, Raddatz T, Esch M, Mauritsen T, von Storch JS, Behrens J, Brovkin V, Claussen M, Crueger T et al (2019) MPI-M MPI-ESM1.2-HR model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6594

    Book  Google Scholar 

  • Khodayar S, Kalthoff N, Kottmeier C (2018) Atmospheric conditions associated with heavy precipitation events in comparison to seasonal means in the western mediterranean region. Clim Dyn 51:951–967

    Article  Google Scholar 

  • Kourtis IM, Tsihrintzis VA, Evangelos Baltas E (2020) A robust approach for comparing conventional and sustainable flood mitigation measures in urban basins. J Environ Manag 269:110822. https://doi.org/10.1016/j.jenvman.2020.110822

    Article  Google Scholar 

  • Kourtis IM, Tsihrintzis VA (2021) Adaptation of urban drainage networks to climate change: a review. Sci Total Environ 771:145431. https://doi.org/10.1016/j.scitotenv.2021.145431

    Article  Google Scholar 

  • Krasting JP, John JG, Blanton C, McHugh C, Nikonov S, Radhakrishnan A, Rand K, Zadeh NT, Balaji V, Durachta J, Dupuis C, Menzel R, Robinson T, Underwood S, Vahlenkamp H, Dunne KA, Gauthier PPG, Ginoux P, Griffies SM et al (2018) NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.8597

    Book  Google Scholar 

  • Landwehr JM (1987) Statistical models for flood frequency stimations, Hydrologic frequency modeling: proceedings of the international symposium on flood frequency and risk analyses, Louisiana State, Baton rouge, USA, pp 14–17 Edit. D. Reidel

  • Lange S (2019) Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci Model Dev 12:3055–3070. https://doi.org/10.5194/gmd-12-3055-2019

    Article  Google Scholar 

  • Larsen AN, Gregersen IB, Christensen OB, Linde JJ, Mikkelsen PS (2009) Potential future increase in extreme one-hour precipitation events over Europe due to climate change. Water Sci Technol 60:2205–2216. https://doi.org/10.2166/wst.2009.650

    Article  Google Scholar 

  • Lastra de la Rubia A, Goanzález Laynez P, Russo B, Rodríguez-Solá R, Ribalaygua J (2018) Escenarios de cambio climático para eventos pluviométricos severos en la Comunidad de Madrid. 139 p. Canal de Isabel II. Cuadernos de I+D+i n°27 ISSN de la edición en soporte electrónico: 2340-1818

    Google Scholar 

  • Maraun D (2013) Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J Clim 26(6):2137–2143

    Article  Google Scholar 

  • Maraun D, Widmann M (2018) Statistical downscaling and bias correction for climate research. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781107588783

    Book  Google Scholar 

  • Martín Vide J, Olcina Cantos J (2001) Climas y Tiempos de España. Alianza Editorial, Madrid, Spain

    Google Scholar 

  • Martínez-Gomariz E, Locatelli L, Guerrero M, Russo B, Martínez M (2019) Socio-economic potential impacts due to urban pluvial floods in Badalona (Spain) in a context of climate change. Water 11:2658. https://doi.org/10.3390/w11122658

    Article  Google Scholar 

  • Ministerio de Fomento de España (2019) Dirección General de Carreteras. NORMA 5.2–IC de la Instrucción de carreteras, Drenaje superficial, página 9. Serie Normativas

    Google Scholar 

  • Miró JJ, Lemus-Canovas M, Serrano-Notivoli R, Olcina-Cantos J, Estrela MJ, Martin-Vide J, Sarricolea P, Meseguer-Ruiz O (2022) A component-based approximation for trend detection of intense rainfall in the Spanish Mediterranean coast, Weather and Climate. Extremes 38:100513

    Google Scholar 

  • Monjo R, Gaitán Fernandez E, Pórtoles J, Ribalaygua J (2015) Changes in extreme precipitation over Spain using statistical downscaling of CMIP5 projections. Int J Climatol 36. https://doi.org/10.1002/joc.4380

  • Muñoz C, Schultz D, Vaughan G (2019) A midlatitude climatology and interannual variability of 200- and 500-hpa cut-off lows. J Clim 33. https://doi.org/10.1175/JCLI-D-19-0497.1

  • Olcina Cantos J (2017) Incremento de episodios de inundación por lluvias de intensidad horaria en el sector central del litoral mediterráneo español: Análisis de tendencias en Alicante. Sémata Cienc Sociais E Humanid 29:143–163

    Google Scholar 

  • Olcina-Cantos J, Casals del Busto I, Campos Rosique A, Ayanz López-Cuervo J, Rodriguez Mateos M, Martínez Puentes M, Marco Terrés J, Plaza Martínez A, Moya Botella JR, Cutillas Lozano LG (2018) Resiliencia en el ciclo urbano del agua. Extremos pluviométricos y adaptación al Cambio climático en el ámbito mediterráneo. AQUAE PAPERS n°8, Fundación AQUAE

    Google Scholar 

  • Olcina-Cantos J, Hernández M (2021) Climate and water on the Spanish Mediterranean coast: challenges for the future. In: In book: Geographies of Mediterranean Europe. Springer Nature, pp 121–143. https://doi.org/10.1007/978-3-030-49464-3_6

    Chapter  Google Scholar 

  • Olcina-Cantos J, y Moltó, E. (2019) Climas y tiempos del País Valenciano. Publicaciones de la Universidad de Alicante, p 180

    Google Scholar 

  • Olsson J (1998) Evaluation of a scaling cascade model for temporal rainfall disaggregation. Hydrol Earth Syst Sci 2(1):19–30

    Article  Google Scholar 

  • O’Neill BC, Kriegler E, Ebi KL, Kemp-Benedict E, Riahi K, Rothman DS, van Ruijven BJ, van Vuuren DP, Birkmann J, Kok K, Levy M, Solecki W (2014) The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environ Change 42:169–180. Available in: http://www.sciencedirect.com/science/article/pii/S0959378015000060

  • Pastor F, Valiente JA, Palau JL (2018) Sea surface temperature in the Mediterranean: trends and spatial patterns (1982–2016). Pure Appl Geophys 175:4017–4029. https://doi.org/10.1007/s00024-017-1739-z

    Article  Google Scholar 

  • Peck A, Prodanovic P, Slobodan P, Simonovic P (2012) Rainfall intensity duration frequency curves under climate change: City of London Ontario, Canada. Can Water Resour J / Revue Can Res Hydriques 37(3):177–189. https://doi.org/10.4296/cwrj2011-935

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33. https://doi.org/10.1007/s10584-011-0149-y

    Article  Google Scholar 

  • Ribas Palom AM, Olcina Cantos J, Sauri Pujol D (2020) More exposed but also more vulnerable? Climate change, high intensity precipitation events and flooding in Mediterranean Spain. Disaster Prev Manag Int J 29:229–248

    Article  Google Scholar 

  • Rodríguez R, Navarro X, Casas MC, Ribalaygua J, Russo B, Pouget L, Redaño A (2014) Influence of climate change on IDF curves for the metropolitan area of Barcelona (Spain). Int J Climatol 34:643–654. https://doi.org/10.1002/joc.3712

    Article  Google Scholar 

  • Sáenz de la Torre JJ, Suárez E, Iglesias D, Sánchez I, Pérez A, Tuni M, García M, San-Martín D, Iturbide M, Gutiérrez JM (2021) Climadjust: easing the Bias Adjustment process through a user-friendly web service. EGU General Assembly, online, 19–30 Apr 2021, EGU21-10674. https://doi.org/10.5194/egusphere-egu21-10674

    Book  Google Scholar 

  • Sánchez-Almodóvar E, Martin-Vide J, Olcina-Cantos J, Lemus-Canovas M (2022) Are atmospheric situations now more favourable for heavy rainfall in the Spanish Mediterranean? Analysis of Episodes in the Alicante Province (1981–2020). Atmosphere 13:1410. https://doi.org/10.3390/atmos13091410

    Article  Google Scholar 

  • Tamayo-Carmona J, Núñez Mora JA (2020) Precipitaciones intensas en la Comunidad Valenciana. Análisis, sistemas de predicción y perspectivas ante el cambio climático. In: En Riesgo de inundación en España: análisis y soluciones para la generación de territorios resilientes López Ortiz,I.; Melgarejo Moreno, J. & Fernández Aracil, P. (edits.). Publicaciones de la Universidad de Alicante, pp 49–62

    Google Scholar 

  • Tang Y, Rumbold S, Ellis R, Kelley D, Mulcahy J, Sellar A, Walton J, Jones C (2019) MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6113

    Book  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate change projections. Philos Trans Royal Soc A Math Phys Eng Sci 365(1857):2053–2075. https://doi.org/10.1098/rsta.2007.2076

    Article  Google Scholar 

  • Valdés J, y Úbeda M (2021) Mapa de Precipitaciones diarias máximas de la provincia de Alicante. Diputación de Alicante y Universidad de Alicante

    Google Scholar 

  • Wang D, Hagen SC, Alizad K (2013) Climate change impact and uncertainty analysis of extreme rainfall events in the Apalachicola River basin Florida. J Hydrol 480:125–135. https://doi.org/10.1016/j.jhydrol.2012.12.015

    Article  Google Scholar 

  • Yukimoto S, Koshiro T, Kawai H, Oshima N, Yoshida K, Urakawa S, Tsujino H, Deushi M, Tanaka T, Hosaka M, Yoshimura H, Shindo E, Mizuta R, Ishii M, Obata A, Adachi Y (2019) MRI MRI-ESM2.0 model output prepared for CMIP6 CMIP historical. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6842

    Book  Google Scholar 

  • Zhou Q, Mikkelsen PS, Halsnæs K, Arnbjerg-Nielsen K (2012) Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits. J. Hydrol 414–415:539–549. https://doi.org/10.1016/j.jhydrol.2011.11.031

    Article  Google Scholar 

Download references

Funding

This research was supported in part by Agencia Valenciana de Innovación (AVI) and the company Aguas Municipalizadas de Alicante.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The initial conception was developed by Luis Gabino Cutillas Lozano, Ignacio Andrés Doménech y Jorge Olcina Cantos. Material preparation and precipitation data collection from Spanish Meteorological Agency (AEMET) was provided by Luis Gabino Cutillas Lozano, climate services and data projections were provided by Antonio Pérez Velasco and Mario Santa Cruz López, the analysis of results and the first draft of the manuscript was done by Luis Gabino Cutillas Lozano and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luis Gabino Cutillas-Lozano.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent the publication of the article.

Competing interests

Authors Luis Gabino Cutillas-Lozano, Ignacio Andrés-Doménech and Jorge Olcina-Cantos declare they have no financial interests. Authors Mario Santa Cruz López and Antonio Pérez Velasco have received consultant honoraria from Company Aguas Municipalizadas de Alicante.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(JPG 637 kb)

ESM 2

(JPG 361 kb)

ESM 3

(JPG 237 kb)

ESM 4

(JPG 258 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cutillas-Lozano, L.G., López, M.S.C., Velasco, A.P. et al. Local-scale regionalisation of climate change effects on rainfall pattern: application to Alicante City (Spain). Theor Appl Climatol 154, 377–402 (2023). https://doi.org/10.1007/s00704-023-04565-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-023-04565-3

Keywords

Navigation