Skip to main content

Advertisement

Log in

Implications for the Iranian economy from climate change effects on agriculture—a static computable general equilibrium approach

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract   

Agricultural sectors worldwide are under direct threat from climate change conditions. In Iran, agricultural production has decreased due to droughts originating in an increase in annual maximum temperatures—with the corresponding increase in crop respiration and evapotranspiration—and a decrease in accumulated precipitation. Based on a static computable general equilibrium approach, this paper reports implication for the Iranian economy from the effects of climate change on agriculture––as modeled through three scenarios relying on assumptions about the magnitude of continued reduction in total agricultural production. Reductions of 6%, 12%, and 18% in total agricultural production reasonably cover the range of impacts that climate change is expected to impose on the Iranian agricultural sector––under the assumption that no behavioral adaptations or policy interventions are in place. Our simulations suggest that effects on the Iranian economy imply a reduction in GDP ranging between 3.7 and 6.3%. In addition, 5–17% of labor moves away from the agriculture sector––this labor relocation occurs due to declining agriculture incomes. Findings illustrate that climate change will reduce households’ consumption and income in all economic sectors, particularly among rural households. We suggest that policies in Iran should focus on improving cultivation methods to save water resources and alleviate the expected effects of climate change. The current study's outcomes are helpful for policymakers, especially in countries with water scarcity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data are available, and references are mentioned.

Code availability

The GAMS software was used for modeling.

References  

  • Ahmadi F, NazeriTahroudi M, Mirabbasi R et al (2022) Spatiotemporal analysis of precipitation and temperature concentration using PCI and TCI: a case study of Khuzestan Province. Iran Theoretical and Applied Climatology 149:743–760. https://doi.org/10.1007/s00704-022-04077-6

    Article  Google Scholar 

  • Al-Riffai P, Breisinger C, Verner D, Zhu T (2012) Droughts in Syria: an assessment of impacts and options for improving the resilience of the poor. Quarterly Journal of International Agriculture 51(1):21–49. https://doi.org/10.22004/ag.econ.155471

    Article  Google Scholar 

  • Arku SF (2013) Local creativity for adapting to climate change among rural farmers in the semi-arid region of Ghana. Int J Clim Chang Strat Manag 5(4):418–430

    Article  Google Scholar 

  • Armington PS (1969) A theory of demand for products distinguished by place of production. IMF Staff Pap 16(1):159–178

    Article  Google Scholar 

  • Arndt C, Thurlow J (2015) Climate uncertainty and economic development: evaluating the case of Mozambique to 2050. Clim Chang 130(1):63–75. https://doi.org/10.1007/s10584-014-1294-x

    Article  Google Scholar 

  • Arshad M, Amjath-Babu TS, Krupnik TJ, Aravindakshan S, Abbas A, Kächele H et al (2017) Climate variability and yield risk in South Asia’s rice–wheat systems: emerging evidence from Pakistan. Paddy Water Environ, 15(2):249–261

    Article  Google Scholar 

  • Arshad M, Amjath-Babu TS, Aravindakshan S, Krupnik TJ, Toussaint V, Kächele H et al (2018) Climatic variability and thermal stress in Pakistan’s rice and wheat systems: a stochastic frontier and quantile regression analysis of economic efficiency. Ecol Ind 89:496–506

    Article  Google Scholar 

  • Ashena M, Shahpari G (2022) Policy uncertainty, economic activity, and carbon emissions: a nonlinear autoregressive distributed lag approach. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-19432-3

    Article  Google Scholar 

  • Ashena M, Sadeghi H, Yavari K, Najarzadeh H (2016) Fuel switching impacts of the industry sector under the clean development mechanism: a general equilibrium analysis of Iran. Int J Energ Econ Policy 6(3):542–550

    Google Scholar 

  • Ashena M, Sadeghi H, Shahpari G (2020) The effects of energy efficiency improvements in the electricity sector on the Iranian economy: a computable general equilibrium approach. Iranian J Econ Stud 9(1):7–33. https://doi.org/10.22099/ijes.2020.35709.1629

    Article  Google Scholar 

  • Bannayan M, Sanjani S, Alizadeh A, Lotfabadi SS, Mohamadian A (2010) Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crops Res 118:105–114. https://doi.org/10.1016/j.fcr.2010.04.011

    Article  Google Scholar 

  • Bauer JM, Mburu S (2017) Effects of drought on child health in Marsabit District Northern Kenya. Econ Human Biol 24(5):74–79

    Article  Google Scholar 

  • Beckman J, Countryman AM (2021) The importance of agriculture in the economy: impacts from COVID‐19. Am J Agric Econ 103(5):1595–1611. https://doi.org/10.1111/ajae.12212

  • Bryan E, Ringler C, Okoba B, Roncoli C, Silvestri S, Herrero M (2013) Adapting agriculture to climate change in Kenya: household strategies and determinants. J Environ Manage 114:26–35

    Article  Google Scholar 

  • Calzadilla A, Zhu T, Rehdanz K, Tol RSJ, Ringler C (2014) Climate change and agriculture: impacts and adaptation options in South Africa. Water Res Econ 5:24–48. https://doi.org/10.1016/j.wre.2014.03.001

    Article  Google Scholar 

  • Chalise S, Naranpanawa A, Bandara JS, Sarker T (2017) A general equilibrium assessment of climate change–induced loss of agricultural productivity in Nepal. Econ Model 62:43–50

    Article  Google Scholar 

  • Cui X, Xie W (2021) Adapting agriculture to climate change through growing season adjustments: evidence from corn in China. Am J Agr Econ 104(1):249–272. https://doi.org/10.1111/ajae.12227

    Article  Google Scholar 

  • Darzi-Naftchali A, Karandish F (2019) Adapting rice production to climate change for sustainable blue water consumption: an economic and virtual water analysis. Theor Appl Clim 135:1–12. https://doi.org/10.1007/s00704-017-2355-7

    Article  Google Scholar 

  • Das U, Ghosh S, Mondal B (2020) Resilience of agriculture in a climatically vulnerable state of India. Theoret Appl Climatol 139:1513–1529. https://doi.org/10.1007/s00704-019-03061-x

    Article  Google Scholar 

  • Dastranj M, Sepaskhah A, Kamgar-Haghighi A (2019) Rainfall and its distribution influences on rain-fed saffron yield and economic analysis. Theoret Appl Climatol 137:3139–3147. https://doi.org/10.1007/s00704-019-02804-0

    Article  Google Scholar 

  • Ding Y, Hayes MJ, Widhalm M (2011) Measuring economic impacts of drought: a review and discussion. Disaster Prev Manag: an Int J 20(4):434–446

    Article  Google Scholar 

  • Farzanegan MR, Feizi M, Gholipour HF (2020) Drought and property prices: empirical evidence from provinces of Iran. Econ Disasters Clim Chang. https://doi.org/10.1007/s41885-020-00081-0

    Article  Google Scholar 

  • Gil M, Garrido A, Gómez-Ramos A (2011) Economic analysis of drought risk: an application for irrigated agriculture in Spain. Agric Water Manag 98:823–833. https://doi.org/10.1016/j.agwat.2010.12.008

    Article  Google Scholar 

  • Hanely N et al (2009) Do increases in energy efficiency improve environmental quality and sustainability? Ecol Econ 68:692–709

    Article  Google Scholar 

  • Huang K, Zhao H, Huang J, Wang J, Findlay C (2020) The impact of climate change on the labor allocation: empirical evidence from China. J Environ Econ Manag 104:102376

    Article  Google Scholar 

  • Huho JM, Kosonei RC (2013) The opportunities and challenges for mitigating climate change through drought adaptive strategies; the case of Laikipia County. Kenya Acad Res Int 4(3):453–465

    Google Scholar 

  • Ingram J, Ericksen P, Liverman D (2010) Food security and global environmental change. Earthscan, Earthscan Publications London, Washington DC

  • IPCC (2007) Fourth assessment report of the intergovernmental panel on climate change glossary climate change: climate change impacts, adaptation, and vulnerability. Cambridge University Press, London

    Google Scholar 

  • IPCC (2013) Summary for policy makers in climate change 2013: The physical science basis contribution of working group 1 to the assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Iran Meteorological Organization (2020) http://www.irimo.ir/

  • Islamic Parliament Research Center (2014) The statistical foundations of social accounting matrix of 2006, Report, No. 12750 (in Persian)

  • Javadi A, Ghahremanzadeh M, Sassi M et al (2023) Economic evaluation of the climate changes on food security in Iran: application of CGE model. Theor Appl Climatol 151:567–585. https://doi.org/10.1007/s00704-022-04289-w

    Article  Google Scholar 

  • Kabubo-Mariara J, Karanja FK (2007) The economic impact of climate change on Kenyan crop agriculture; a Ricardian approach. Global Planet Change 57(3–4):319–330

    Article  Google Scholar 

  • Keshavarz M, Karami E, Vanclay F (2013) The social experience of drought in rural Iran. Land Use Policy 30:120–129. https://doi.org/10.1016/j.landusepol.2012.03.003

    Article  Google Scholar 

  • Keshavarz M, Maleksaeidi H, Karami E (2017) Livelihood vulnerability to drought: a case of rural Iran. Int J Disaster Risk Reduction 21:223–230

    Article  Google Scholar 

  • Khalili N, Arshad M, Farajzadeh Z, Kächele H, Müller K (2020) Does drought affect smallholder health expenditures? Evidence from Fars Province, Iran. Environ Dev Sustain. https://doi.org/10.1007/s10668-020-00608-1

  • Khoshkalam M (2014) Updating I-O and SAM and designing a CGE model and its usage in economic and social policies. Islamic Parliament Research Center, Report No. 13630, Chapter 12 (in Persian)

  • Kichamu EA, Ziro JS, Palaniappan G et al (2017) Climate change perceptions and adaptations of smallholder farmers in Eastern Kenya. Environ Dev Sustain 20:2663–2680. https://doi.org/10.1007/s10668-017-0010-1

    Article  Google Scholar 

  • Lazzaroni S, Wanger N (2016) Misfortunes never come singly: structural change, multiple shocks and child malnutrition in rural Sengal. Economic and Human Biology 23:246–262. https://doi.org/10.1016/j.ehb.2016.10.006

    Article  Google Scholar 

  • Lofgren H, Harris R, Robinson S (2002) A standard computable equilibrium (CGE) model in GAMS. TMD discussion papers 75, International Food Policy Research Institute (IFPRI)

  • Malhi GS, Kaur M, Kaushik P (2021) Impact of climate change on agriculture and its mitigation strategies: a review. Sustainability 13:1318. https://doi.org/10.3390/su13031318

    Article  Google Scholar 

  • Markandya A, Mysiak J (2010) The economic costs of droughts. Economics of drought and drought preparedness in a climate change context 95:131–138. http://om.ciheam.org/article.php?IDPDF=801338

  • Modarres R, Sarhadi A, Burn DH (2016) Changes of extreme drought and food events in Iran. Global Planet Change 144:67–81

    Article  Google Scholar 

  • Mokhtari D, Saleh I (2007) Social and economic consequences of drought on rural household in Sistan Province. Sci Distrib Agric Iran 3(1):99–114 (in Persian)

    Google Scholar 

  • Nasim S, Helfand S, Dinar A (2020) Groundwater management under heterogeneous land tenure arrangements. Resour Energy Econ 62. https://doi.org/10.1016/j.reseneeco.2020.101203

  • Oehninger EB, Lawell C-YCL (2021) Property rights and groundwater management in the high plains Aquifer. Resour Energy Econ 63. https://doi.org/10.1016/j.reseneeco.2019.101147`

  • Okoba B, Dejene AA, Mallo M (2011) Climate shocks, perceptions and coping options in semi-arid Kenya. In W. L. Filho (Ed.), Experiences of climate change adaptation in Africa; climate change management (Vol. 4, pp. 167–181). Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-642-22315-0_10

  • Raikes J, Smith TF, Jacobson C, Baldwin C (2019) Pre-disaster planning and preparedness for floods and droughts: a systematic review. Int J Disaster Risk Reduction 38:101207

    Article  Google Scholar 

  • Rao MSG, Sajid M, Rauf S, Munir H, Shehzad M, Haider W (2021) Evaluation of drought-tolerant sunflower (Helianthus annuus L.) hybrids in autumn and spring planting under semi-arid rainfed conditions. OCL J 28(24). https://doi.org/10.1051/ocl/2021012

  • Raziei T (2022) Climate of Iran according to Köppen-Geiger, Feddema, and UNEP climate classifications. Theoret Appl Climatol 148:1395–1416. https://doi.org/10.1007/s00704-022-03992-y

    Article  Google Scholar 

  • Roson R, Mensbrugghe VD (2010) Climate change and economic growth: impacts and interactions. University Ca’ Foscari of Venice, Dept. of Economics, Research Paper Series No. 07–10. https://doi.org/10.2139/ssrn.1594708

  • Salami H, Shahnooshi N, Kenneth JT (2009) The economic impacts of drought on the economy of Iran. Ecol Econ 68(1032–1039):1032–1039. https://doi.org/10.1016/j.ecolecon.2008.12.003

    Article  Google Scholar 

  • Sediqi MN, Hendrawan VSA, Komori D (2022) Climate projections over different climatic regions of Afghanistan under shared socioeconomic scenarios. Theoret Appl Climatol 149:511–524. https://doi.org/10.1007/s00704-022-04063-y

    Article  Google Scholar 

  • Shahpari G, Sadeghi H, Ashena M, Shahpari M (2021a) Economic effects of earthquakes; focusing on the health sector. Int J Econ Policy Emerg Econ 14(1):85–100. https://doi.org/10.1504/IJEPEE.2021.111935

    Article  Google Scholar 

  • Shahpari G, Ashena M, Shahpari M (2021b) How earthquakes can affect health sector of the economy? Disaster Advances 14(3):56–62

    Google Scholar 

  • Shahpari G, Sadeghi H, Ashena M, Leon DG (2022) Drought effects on the Iranian economy: a computable general equilibrium approach. Environ Dev Sustain 24:4110–4127. https://doi.org/10.1007/s10668-021-01607-6

    Article  Google Scholar 

  • Shamloo N, Sattari MT, Apaydin H (2022) Agricultural drought survey using MODIS-based image indices at the regional scale: case study of the Urmia Lake Basin Iran. Theoret Appl Climatol 149:39–51. https://doi.org/10.1007/s00704-022-04023-6

    Article  Google Scholar 

  • Sharafati A, MoradiTayyebi M, Pezeshki E et al (2022) Uncertainty of climate change impact on crop characteristics: a case study of Moghan plain in Iran. Theoret Appl Climatol 149:603–620. https://doi.org/10.1007/s00704-022-04074-9

    Article  Google Scholar 

  • Shukla G, Kumar A, Pala NA, Chakravarty S (2016) Farmers’ perception and awareness of climate change: a case study from Kanchandzonga Biosphere Reserve, India. Environ Dev Sustain 18:1167–1176

    Article  Google Scholar 

  • Siddig K, Stepanyan D, Wiebelt M, Grethe H, Zhu T (2020) Climate change and agriculture in the Sudan: Impact pathways beyond changes in mean rainfall and temperature. Ecol Econ 169:106566

    Article  Google Scholar 

  • Solaymani S (2018) Impacts of climate change on food security and agriculture sector in Malaysia. Environ Dev Sustain 20:1575–1596. https://doi.org/10.1007/s10668-017-9954-4

    Article  Google Scholar 

  • Spinelli A (2009) Modeling water reallocation policies in a CGE framework: the impact of drought on the Kenyan economy, doctoral school on the Agro-food system, University of Cattolica. https://tesionline.unicatt.it/bitstream/10280/781/1/testo%20completo.pdf

  • Thepa P (2021) The Relationship between land use and climate change: a case study of Nepal, The Nature, Causes, Effects and Mitigation of Climate Change on the. Environment. https://doi.org/10.5772/intechopen.98282

    Article  Google Scholar 

  • Udmale P, Ichikawa Y, Manandhar S, Ishidaira H, Kiem AS (2014) Farmers’ perception of drought impacts, local adaptation and administrative mitigation measures in Maharashtra State, India. Int J Disaster Risk Reduction 10:250–269

    Article  Google Scholar 

  • Udmale PD, Ichikawa Y, Manandhar S, Ishidaira H, Kiem AS, Shaowei N et al (2015) How did the 2012 drought affect rural livelihoods in vulnerable areas? Empirical evidence from India. Int J Disaster Risk Reduction 13:454–469. https://doi.org/10.1016/j.ijdrr.2015.08.002

    Article  Google Scholar 

  • Vaghefi N, Mad Nasir S, Makmom A, Bagheri M (2011) The economic impacts of climate change on the rice production in Malaysia. Int J Agric Res 6(1):67–74

    Article  Google Scholar 

  • Wu YH, Liu C, Hung M, Liu T, Masui T (2019) Sectoral energy efficiency improvements in Taiwan: Evaluations using a hybrid of top-down and bottom-up models. Energy Policy 132:1241–1255. https://doi.org/10.1016/j.enpol.2019.06.043

    Article  Google Scholar 

  • Zainal Z, Shamsudin MN, Abidin Mohamed Z, Adam SU (2012) Economic impact of climate change on the Malaysian palm oil production. Trends Appl Sci Res 7(10):872–880

    Article  Google Scholar 

  • Ziaei S (2013) Simulation of drought consequences in the sub-sector of planting in Iran. J Agric Econ Dev 21(8):203–229 (in Persian)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude and commendation for Mr. Mehran Shahpari, whose guidance and support as a literary editor have been invaluable throughout this study.

Author information

Authors and Affiliations

Authors

Contributions

GS wrote the main manuscript and prepared all figures and tables. MA Helped with developing the simulations and coding and revised the whole manuscript. AC revised the manuscript. DL reviewed the logicality of the CGE model and the results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ghazal Shahpari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•Static CGE approach to study implications on the Iranian economy from climate change effects on agriculture.

•GDP decreases; labor moves from the agriculture sector; households’ consumption and income decrease in all sectors.

•Innovation in the agricultural sector is essential to face expected effects of climate change and water scarcity in Iran.

Appendices

Appendix: Description of the CGE model

VARIABLES

EXR:

Exchange rate

HSAV:

Household savings

GSAV:

Government savings

MPShMPSh:

Marginal propensity to save for domestic nongovernment institution

PAa:

Price of activity a

PDc:

Domestic prices

PMc:

Domestic price of imports

PEc:

Domestic price of exports

PQc:

Price of composite goods

PDDc:

Demand price for commodity produced and sold domestically,

PVAa:

Value added price by sector

PXc:

Average output price by sector

PDSc:

Supply price for commodity produced and sold domestically.

PXACac:

Producer price of commodity c for activity a,

QAa:

Level of activity a

QVAa:

Value added quantity by sector

QDc:

Domestic sales

QEc:

Exports by sector

QMc:

Imports

QQc:

Composite goods supply

QXc:

Domestic output by sector

QFfa:

Quantity demand of factor f from activity a

QFSf:

Labor supply by labor category (1000 persons)

QHch:

Final demand for private consumption

QINTca:

Intermediate uses

QINVc:

Final demand for productive investment

WFf:

Average wage rate by labor category

WDISTfa:

Age distortion factor for factor f in activity a

YENT:

Institutions income

YFhf:

Transfer of income to household from factor f

YHh:

Household income

YFe:

Transfer of income to ins from factor parameters

pwmc:

World price of import for commodity c

tmc:

Import tariff rate

pwec:

f.o.b. export price

tec:

Export tax rate

tqc:

Rate of sales tax (as share of composite price inclusive of sales tax)

θac:

Yield of output c per unit of activity a

taa:

Tax rate for activity

icaac:

Quantity of c per unit of aggregate intermediate input a

aaa:

Efficiency parameter in the CES activity function,

δaa:

CES activity function share parameter,

paa:

CES activity function exponent

tvaa:

Rate of value-added tax for activity a

δfvaa:

CES value-added function share parameter for factor f in activity a

ρava:

CES value-added function exponent

intaa:

Quantity of aggregate intermediate input per activity unit

aqc:

An Armington function shift parameter

δqc:

An Armington function share parameter

ρq:

An Armington function exponent

atc:

A CET function shift parameter

δct:

A CET function share parameter

ρtc:

A CET function exponent

shryhf:

Share of household income from each factor

trrrf:

Transfer rate of factor

trh,ins:

Transfer from household to institution

βch:

Marginal share of consumption spending on marketed commodity c for household h

tyh:

Income tax rate

shh:

Share of transfers of households to other institutions

trgov,row:

Transfers from Rest of the World to the government

trgov,insd:

Transfer from government to domestic institution

shryent,f:

Share of enterprises income from each factor

trent,insd:

Transfer between enterprises and domestic institution

trent,row:

Transfer between enterprises and rest of the world

EQUATIONS

  1. 1)

    \({PM}_{c}={pwm}_{c}. \left(1+ {tm}_{c}\right). EXR\)

  2. 2)

    \({PE}_{c}={pwe}_{c}.\left(1-{te}_{c}\right). EXR\)

  3. 3)

    \({PQ}_{c}.{QQ}_{c}={PDD}_{c}.{QD}_{c}+{PM}_{c}.{QM}_{c}\left(1+{tq}_{c}\right)\)

  4. 4)

    \({PX}_{c}.{QX}_{c}={PDS}_{c}.{QD}_{c}+{PE}_{c}.{QE}_{c}\)

  5. 5)

    \({PA}_{a}= \sum_{\mathrm{c}\in \mathrm{C}}{PXAC}_{ac}. {\theta }_{ac}\)

  6. 6)

    \({PVA}_{a}={PA}_{a}.\left(1-{ta}_{a}\right).{QVA}_{a}-\sum_{c}{ica}_{ac}.{PQ}_{c}\)

  7. 7)

    \({QA}_{a}={\alpha }_{a}^{a}.({\delta }_{a}^{a}.{QVA}_{a}^{-{\rho }_{a}^{a}}+\left(1-{\delta }_{a}^{a}\right).{QINTA}_{a}^{-{\rho }_{a}^{a}}{)}^{-\frac{1}{{\rho }_{a}^{a}}}\)

  8. 8)

    \(\frac{{QVA}_{a}}{{QINTA}_{a}}=({\frac{{PINTA}_{a}}{{PVA}_{a}}.\frac{{\delta }_{a}^{a}}{1-{\delta }_{a}^{a}})}^{\frac{1}{1+{\rho }_{a}^{a}}}\)

  9. 9)

    \({QVA}_{a}={\alpha }_{a}^{va}.(\sum_{f\in F}{\delta }_{fa}^{va}.{QF}_{fa}^{-{\rho }_{a}^{va}}{)}^{-\frac{1}{{\rho }_{a}^{va}}}\)

  10. 10)

    \({WF}_f.{\overline{WFDIST}}_{fa}={PVA}_a\left(1-{tva}_a\right).{QVA}_a.(\sum_{f\in\dot F}\delta_{fa}^{va}.{QF}_{fa}^{-\rho_a^{va}})^{-1}.\delta_{fa}^{va}.{QF}_{fa}^{-\rho_a^{va}-1}\)

  11. 11)

    \({QINT}_{ca}={ica}_{ca}.{QINTA}_{a}\)

  12. 12)

    \({QX}_{c}=\sum_{a}{\theta }_{ac}.{QA}_{a}\)

  13. 13)

    \({QQ}_{c}={aq}_{c}.({\delta }_{c}^{q}.{QM}_{c}^{{\rho }^{q}}+(1-{\delta }_{c}^{q}).{QD}_{c}^{{\rho }^{q}}{)}^{-\frac{1}{{\rho }_{c}^{q}}}\)

  14. 14)

    \(\frac{{QM}_{c}}{{QD}_{c}}=(\frac{{PD}_{c}}{{PM}_{c}}.\frac{{\delta }_{c}^{q}}{1-{\delta }_{c}^{q}}{)}^{\frac{1}{1+{\rho }^{q}}}\)

  15. 15)

    \({QQ}_{c}={QD}_{c}+{QM}_{c}\)

  16. 16)

    \({QX}_{c}={at}_{c}({\delta }_{c}^{t}.{QE}_{c}^{{\rho }_{c}^{t}}+\left(1-{\delta }_{c}^{t}\right).{QD}_{c}^{{\rho }_{c}^{t}}{)}^{\frac{1}{{\rho }_{c}^{t}}}\)

  17. 17)

    \(\frac{{QE}_{c}}{{QD}_{c}}=(\frac{{PE}_{c}}{{PD}_{c}}.\frac{1-{\delta }_{c}^{{\rho }_{c}^{t}}}{{\delta }_{c}^{t}}{)}^{\frac{1}{{\rho }^{t}-1}}\)

  18. 18)

    \({QX}_{c}={QD}_{c}\)

  19. 19)

    \({YF}_{hf}={shry}_{hf}.((1-{tf}_{f})\sum_{f}{WF}_{f}.{\overline{\mathrm{WFDIST}} }_{\mathrm{f a}}.{QF}_{fa}-{trr}_{f}.ER)\)

  20. 20)

    \({YH}_{h}=\sum_{f}{YF}_{hf}+{{tri}_{h ,firm}+tr}_{h,gov}.CPI+{tr}_{h,ROW}.ER\)

  21. 21)

    \({QH}_{ch}=\frac{{\beta }_{ch}.\left(1-{MPS}_{h}\right).\left(1-{ty}_{h}\right).\left(1-{sh}_{h}\right).{Y}_{h}}{{PQ}_{c}}\)

  22. 22)

    \(\mathrm{YG}=\sum_{h}{ty}_{h}.{Y}_{h}+\sum_{cm}{tq}_{c}.\left({PD}_{c}.{QD}_{c}+{PM}_{c}.{QM}_{c}\right)+\sum_{cm}{tm}_{c}.ER.{pwm}_{c}.{QM}_{c}+\sum_{ce}{te}_{c}.ER.{pwe}_{c}.{Qe}_{c}+{tr}_{gov,row}.er+{tr}_{gov,insd}\)

  23. 23)

    \(YENT=\sum_{f}{shry}_{ent,f}.\left(\sum_{f}{WF}_{f}.{WDIST}_{fa}.{QF}_{fa}+{trr}_{f}.ER\right)+\sum_{insd}{tr}_{ent,insd}+{tr}_{ent,row}.ER\)

  24. 24)

    \(HSAV=\sum_{h}{MPS}_{h}.\left(1-{ty}_{h}\right).\left(1-{sh}_{h}\right).{YH}_{h}\)

  25. 25)

    \(GSAV=YG-\sum_{c}{PQ}_{c}.{gles}_{c}.gdtot+\sum_{ins}{tr}_{ins,gov}\)

  26. 26)

    \(ENTSAV=YG-\sum_{c}{PQ}_{c}.entdtot+\sum_{ins}{tr}_{ins,ent}\)

  27. 27)

    \({QFS}_{f}=\sum_{a}{QF}_{fa}\)

  28. 28)

    \({\mathrm{QQ}}_{c}=\sum_{a}{QINT}_{ca}-\sum_{h}{qh}_{ch}+{PQ}_{c}.gles.GDTOT+{PQ}_{c}.{eles}_{c}.entdtot+qinv\)

  29. 29)

    \(\sum_{cm}{pwm}_{c}.{QM}_{c}+\sum_{f}{trf}_{f}+\sum_{ins}{tr}_{row,ins}+OCAP=\sum_{ce}{pwe}_{c}.{QE}_{c}+\sum_{f}{trr}_{f}+\sum_{ins}{tr}_{ins,row}+FSAV\)

  30. 30)

    \(\sum_{c}{QINV}_{c}.{PQ}_{c}+OCAP+WALRAS=\sum_{h}HSAV+GSAV+ENTSAV+FSAV.ER\)

  31. 31)

    \(\sum_{c}{PQ}_{c}.{cwts}_{c}=cpi\)

  32. 32)

    \(GDP=\sum_{a}{QA}_{a}.{PA}_{a}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahpari, G., Ashena, M., Martinez-Cruz, A.L. et al. Implications for the Iranian economy from climate change effects on agriculture—a static computable general equilibrium approach. Theor Appl Climatol 153, 1221–1235 (2023). https://doi.org/10.1007/s00704-023-04506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-023-04506-0

Keywords

Navigation