Skip to main content

Advertisement

Log in

Ocean–atmosphere interaction identified in tree-ring time series from southern Brazil using cross-wavelet analysis

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Tropical dendrochronology has gained significant attention in recent years, particularly with the dendrochronological study of new species that produce annual growth rings and are responsive to environmental changes. Despite the progress, the extent to which ocean–atmosphere interactions influence regional climate and, consequently, tree growth, is not fully understood. Among the new species, Ocotea porosa (Nees & Mart.) Barroso (also known as Imbuia) has shown excellent potential for climate research. This study investigates the climatic and solar influences on a chronology of 41 Imbuia tree samples. Pearson’s correlation was used alongside Wavelet transform to evaluate periodicities between the tree-ring chronology and climatic parameters such as the southern-oscillation index (SOI), annual precipitation, El Niño 3.4 (PACE), and the South Atlantic Index (ATLS). Our analysis revealed evidence of the influence of the El Niño Southern Oscillation (SOI) on rainfall variability in the region, the Hale and Gleissberg solar cycles causing precipitation variation, likely due to the influence of the Atlantic Ocean, and the Brückner-Egeson-Lockyer climatic cycle, which is correlated with sunspot activity. Furthermore, our wavelet analysis identified possible connections to the Eastern Pacific-type El Niño events during five specific periods: 1911–1912, 1918–1919, 1976–1977, 1982–1983, and 1986–1987. The results indicate that southern Brazil is affected by several climatic and geophysical parameters from both the Atlantic and Pacific oceans, which directly affect the growth of Imbuia trees as their tree-ring series display sensitivity to these parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets generated and analyzed during the current study are available under request

References

  • Aceituno P (1988) On the functioning of the southern oscillation in the south american sector. part i: Surface climate. Monthly Weather Review 116(3):505–524. https://doi.org/10.1175/1520-0493(1988)116<0505:OTFOTS>2.0.CO;2

  • Anchukaitis KJ, Wilson R, Briffa KR et al (2017) Last millennium northern hemisphere summer temperatures from tree rings: Part ii, spatially resolved reconstructions. Quaternary Science Reviews 163:1–22

    Article  Google Scholar 

  • Boulanger JP, Leloup J, Penalba O et al (2005) Observed precipitation in the Paraná-Plata hydrological basin: long-term trends, extreme conditions and ENSO teleconnections. Climate Dynamics 24(4):393–413. https://doi.org/10.1007/s00382-004-0514-x

    Article  Google Scholar 

  • Bunn AG, Jansma E, Korpela M et al (2013) Using simulations and data to evaluate mean sensitivity as a useful statistic in dendrochronology. Dendrochronologia 31(3):250–254. https://doi.org/10.1016/j.dendro.2013.01.004. https://www.sciencedirect.com/science/article/pii/S1125786513000295

  • Camuffo D (2001) Lunar Influences On Climate. Earth Moon and Planets 85:99–113. https://doi.org/10.1023/A:1017099427908

    Article  Google Scholar 

  • Chelton DB, Xie SP (2010) Coupled-ocean atmosphere at oceanic mesoscales. Oceanograph 23(4):52–69 (http://www.jstor.org/stable/24860862)

    Article  Google Scholar 

  • Cook E, Kairiukstis LA (1990) Methods of Dendrochronology: Applications in the Environmental Sciences. Springer

  • Cook ER, Woodhouse CA, Eakin CM et al (2004) Long-term aridity changes in the Western United States. Science 306(5698):1015–1018

    Article  Google Scholar 

  • Currie RG (1974) Solar cycle signal in surface air temperature. Journal of Geophysical Research (1896-1977) 79(36):5657–5660. https://doi.org/10.1029/JC079i036p05657

    Article  Google Scholar 

  • Dergachev V, Raspopov O (2000) The long-term solar cyclicity (210 and 90 years) and variation of the global terrestrial air temperatures since (1868) Solar and Space Weather Euroconference. The Solar Cycle and Terrestrial Climate 463:485

    Google Scholar 

  • Dittberner MR (2001) Causas e efeitos das turbulências nas operações aéreas do aeroporto internacional hercílio luz, monografia (Monografia de Graduação). Departamento de Geografia - UFSC

  • Douglass AE (1919) Climatic Cycles and Tree-Growth. A Study of the Annual Rings of Trees in Relation to Climate and Solar Activity. the Carnegie Institution of Washington, Washington

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295(5563):2250–2253

    Article  Google Scholar 

  • Filho AF, R. HS, Schaaf LB et al (2003) Avaliação do incremento em diâmetro com o uso de cintas dendrométricas em algumas espécies de uma floresta ombrófila mista localizada no sul do estado do paraná. Revista Ciências Exatas e Naturais 5(1)

  • Fye FK, Cleaveland MK (2001) Paleoclimatic analyses of tree-ring reconstructed summer drought in the united states, 1700–1978. Thee-Ring Research 57:31–34

    Google Scholar 

  • Gabor D (1946) Theory of communication. part 1: The analysis of information. Journal of the Institution of Electrical Engineers- Part III: Radio and Communication Engineering 93(12):429–441

    Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R et al (2009) Present-day south american climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281(3):180–195. long-term multi-proxy climate reconstructions and dynamics in South America (LOTRED-SA): State of the art and perspectives. https://doi.org/10.1016/j.palaeo.2007.10.032

  • Gasquez M, Magalhães AR (1987) Climate anomalies and their impacts in brazil during the 1982-83 enso event. LUGANO Report: climate crises pp 30–36

  • Graps A (1995) An introduction to wavelets. IEEE Comput Sci Eng 2(2):50–61. https://doi.org/10.1109/99.388960

    Article  Google Scholar 

  • Haddad SAP, Serdijn WA (2009) Wavelet versus Fourier Analysis. Springer, Netherlands, Dordrecht. https://doi.org/10.1007/978-1-4020-9073-8_3

  • Haigh J (2007) The sun and the earth’s climate. Living Rev Sol Phys 4(2). https://doi.org/10.12942/lrsp-2007-2

  • Hathaway D (2010) The solar cycle. Living Rev Sol Phys 7(1). https://doi.org/10.12942/lrsp-2010-1

  • Helama S, Lindholm M, Timonen M et al (2004) Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theoretical and Applied Climatology 79

  • Hoyt DV, Schatten KH (1997) The Role of the Sun in Climate Change. Oxford University Press

    Book  Google Scholar 

  • Junior RSN, Sentelhas PC (2019) Soybean-maize off-season double crop system in brazil as affected by el niño southern oscillation phases. Agricultural Systems 173:254–267. https://doi.org/10.1016/j.agsy.2019.03.012https://www.sciencedirect.com/science/article/pii/S0308521X18312691

  • Kivelson MG, Russell CT (1995) Introduction to Space Physics. Cambridge University Press

    Book  Google Scholar 

  • Kumar P, Foufoula-Georgiou E (1997) Wavelet analysis for geophysical applications. Reviews of Geophysics 35(4):385–412. https://doi.org/10.1029/97RG00427

    Article  Google Scholar 

  • Lassen K, Friis-christensen E (1995) Variability of the solar cycle length during the past five centuries and the apparent association with terrestrial climate. Journal of Atmospheric and Solar-Terrestrial Physics 57:835–845

    Article  Google Scholar 

  • Leal PC (1999) Sistema praial moçambique - barra da lagoa - ilha de santa catarina - brasil: Aspectos morfológicos, morfodinâmicos, sedimentológicos e ambientais. PhD thesis, Universidade Federal de Santa Catarina, Santa Catarina

  • Lean J, Rind D (1999) Evaluating sun-climate relationships since the little ice age. Journal of Atmospheric and Solar-Terrestrial Physics 61(1):25–36 https://doi.org/10.1016/S1364-6826(98)00113-8https://www.sciencedirect.com/science/article/pii/S1364682698001138

  • Locosselli GM (2012) A multi-proxy dendroecological analysis of two tropical species (hymenaea spp., leguminosae) growing in a vegetation mosaic. Trees 27

  • Lorensi C (2016) Resposta dos anéis de crescimento de araucaria angustifolia (bertol.) o. kuntze da região sul do brasil aos forçantes geofísicos e climáticos. PhD thesis, Universidade do Vale do Paraíba - UNIVAP, Instituto de Pesquisa e Desenvolvimento Programa de Pós-Graduação em Física e Astronomia

  • Ma L (2009) Gleissberg cycle of solar activity over the last 7000years. New Astronomy 14(1):1–3 https://doi.org/10.1016/j.newast.2008.04.001https://www.sciencedirect.com/science/article/pii/S1384107608000511

  • Magdoff F (2005) Book review: Late victorian holocausts: El niño famines and the making of the third world. by mike davis 2001. verso, London and New York. isbn 1-85984-739-0, cloth. Renewable Agriculture and Food Systems 20(3):190–192. https://doi.org/10.1079/RAF2005109

  • Marengo J, Rogers J (2001) Polar air outbreaks in the americas: Assessments and impacts during modern and past climates. Interhemispheric Climate Linkages, pp 31–51

  • Nascimento T (2022) Imbuias multisseculares: Dendrocronologia e propriedades físico-anatômicas da madeira de ocotea porosa, completion of the Undergraduate Course in Forestry Engineering at the Center for Rural Sciences. Universidade de Santa Catarina - Departamento de Agricultura, Biodiversidade e Florestas

    Google Scholar 

  • Nery JT (2005) Dinâmica climática da região sul do brasil. Revista Brasileira de Climatologia 1(1)

  • Nimer E (1989) Climatologia do Brasil. IBGE, Rio de Janeiro

    Google Scholar 

  • Nogués-Paegle J, Mo KC (1997) Alternating wet and dry conditions over south america during summer. Monthly Weather Review 125(2):279–291

    Article  Google Scholar 

  • Nordemann DJR, Rigozo NR, Echer E et al (2002) Solar activity and el ninõ effects on southern brazil araucaria ring widths (1955-1997). INTERNATIONAL CONFERENCE ON DENDROCHRONOLOGY (Poster)

  • Oliveira AS (1986) Interações entre sistemas na américa do sul e convecção na amazônia. PhD thesis, Instituto Nacional de Pesquisas Espaciais

  • Percival D, Walden AT (2002) Introduction to Wavelets. University of Washington

  • Peristykh AN, Damon PE (2003) Persistence of the gleissberg 88-year solar cycle over the last \(\sim \) 12,000 years: Evidence from cosmogenic isotopes. Journal of Geophysical Research 108:1003

    Article  Google Scholar 

  • Prestes A (2009) Relação sol-terra estudada através de anéis de crescimento de coníferas do holoceno recente e triássico. 2009. PhD thesis, Instituto Nacional de Pesquisas Espaciais, São José dos Campos

  • Prestes A, Rigozo NR, Nordemann DJR et al (2011) Sun-earth relationship inferred by tree growth rings in conifers from severiano de almeida, southern brazil. Journal of Atmospheric and Solar-Terrestrial Physics 73:1587–1593

    Article  Google Scholar 

  • Prestes A, Klausner V, Rojahn I et al (2018) Araucaria growth response to solar and climate variability in south brazil. Annales Geophysicae 36:717–729. https://doi.org/10.5194/angeo-36-717-2018

    Article  Google Scholar 

  • Rasmusson E, Carpenter T (1982) Variation in tropical sea surface temperature and surface wind fields associated with southern oscillation/el niño. Monthly Weather Review 110(5):354–384

    Article  Google Scholar 

  • Raspopov O, Dergachev V, Kolström T (2004) Periodicity of climate conditions and solar variability derived from dendrochronological and other palaeoclimatic data in high latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology 209(1):127–139. high Latitude Eurasian Palaeoenvironments. https://doi.org/10.1016/j.palaeo.2004.02.022. https://www.sciencedirect.com/science/article/pii/S0031018204001154

  • Rigozo N, Evangelista H, Nordemann D et al (2008) The medieval and modern maximum solar activity imprints in tree ring data from chile and stable isotope records from antarctica and peru. Journal of Atmospheric and Solar-Terrestrial Physics 70:1012–1024. https://doi.org/10.1016/j.jastp.2008.01.002

    Article  Google Scholar 

  • Rigozo N, Lisi C, Filho M et al (2012) Solar-terrestrial signal record in tree ring width time series from brazil. Pure and Applied Geophysics 169. https://doi.org/10.1007/s00024-012-0480-x

  • Rigozo NR, Nordemann DJR, Echer E et al (2004) Search for solar periodicities in tree-ring widths from concórdia (s.c., brazil). Pure and Applied Geophysics 161:221–233. https://doi.org/10.1007/s00024-003-2427-8

    Article  Google Scholar 

  • Rigozo NR, Nordemann DJR, Echer E et al (2004b) Search for solar periodicities in tree-ring widths from concórdia (s.c., brazil). Pure and Applied Geophysics 161(1):221–233

  • Rodrigues JM (2011) Influência dos modos de variabilidade oceânica no clima da américa do sul durante o holoceno médio. Master thesis, Universidade Federal de Viçosa., Viçosa - MG

  • Sampaio G (2000) El Niño e Você - o fenômeno Climático. Editora Transtec, São José dos Campos

    Google Scholar 

  • Saulo AC, Nicolini M, Chou SC (2000) Model characterization of the south american low-level flow during the 1997–1998 spring-summer season. Climate Dynamics 16:867–881. https://doi.org/10.1007/s003820000085

    Article  Google Scholar 

  • Scafetta N (2009) Empirical analysis of the solar contribution to global mean air surface temperature change. Journal of Atmospheric and Solar-Terrestrial Physics 71(17):1916–1923. https://doi.org/10.1016/j.jastp.2009.07.007

    Article  Google Scholar 

  • Scafetta N (2010) Empirical evidence for a celestial origin of the climate oscillations and its implications. Journal of Atmospheric and Solar-Terrestrial Physics 72(13):951–970 https://doi.org/10.1016/j.jastp.2010.04.015https://www.sciencedirect.com/science/article/pii/S1364682610001495

  • Schossler V, Simões JC, Aquino FE et al (2018) Precipitation anomalies in the brazilian southern coast related to the sam and enso climate variability modes. Brazilian Journal of Water Resources 23. https://doi.org/10.1590/2318-0331.231820170081. Accessed 10 Aug 2021

  • Schweingruber FH (1988) Tree Rings: Basics and Applications of Dendrochronology. D. Reidel Publishing Company

  • Shiyatov SG, Mazepa VS (1987) Some New Approaches in the Consideration of More Reliable Dendroclimatological Series and in the Analysis of Cycle Components. Methods of Dendrochronology, Kairiukstis, L. et al. (eds.), International Institute for Applied Systems Analysis, Laxenburg, Austria and Polish Academy of Sciences-System Research Institute, Warsaw, Poland

  • Silva AC (2013) Análise dendroclimática da região de três barras e canoinhas-sc. Phd thesis, Universidade do Vale do Paraíba

  • Silva DO, Klausner V, Prestes A et al (2021) Principal components analysis: An alternative way for removing natural growth trends. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-021-02776-1

  • Solanki SK, Fligge M (1998) Solar irradiance since 1874 revisited. Geophysical Research Letters 25(3):341–344. https://doi.org/10.1029/98GL50038

    Article  Google Scholar 

  • Souza Echer M, Echer E, Rigozo N et al (2012) On the relationship between global, hemispheric and latitudinal averaged air surface temperature (giss time series) and solar activity. Journal of Atmospheric and Solar-Terrestrial Physics 74:87–93 https://doi.org/10.1016/j.jastp.2011.10.002. https://www.sciencedirect.com/science/article/pii/S1364682611002756

  • Souza Echer MP, Echer E, Nordemann DJ et al (2008) Wavelet analysis of a centennial (1895–1994) southern brazil rainfall series (pelotas, 31\(^\circ \)46’19’’s 52\(^\circ \)20’ 33’’w). Climatic Change 87:489–497

    Article  Google Scholar 

  • Speer JH (1971) Fundamentals of Tree-Ring Research. Library of Congress Cataloging-in-Publication Data

  • Teixeira Nery J, Carfan AC (2014) Re-analysis of pluvial precipitation in southern brazil. Atmósfera 27(2):103–115. https://doi.org/10.1016/S0187-6236(14)71104-X

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society 79(1):61–78

    Article  Google Scholar 

  • Velasco V, Mendoza B (2008) Assessing the relationship between solar activity and some large scale climatic phenomena. Advances in Space Research 42(5):866–878 https://doi.org/10.1016/j.asr.2007.05.050https://www.sciencedirect.com/science/article/pii/S0273117707005418

  • Velasco Herrera G (2016) Mexican forest fires and their decadal variations. Advances in Space Research 58(10):2104–2115. space and Geophysical Research related to Latin America - Part 2. https://doi.org/10.1016/j.asr.2016.08.030. https://www.sciencedirect.com/science/article/pii/S0273117716304835

  • Venegas-González A, Roig FA, Lisi CS et al (2018) Drought and climate change incidence on hotspot cedrela forests from the mata atlântica biome in southeastern brazil. Global Ecology and Conservation 15(e00):408. https://doi.org/10.1016/j.gecco.2018.e00408, https://www.sciencedirect.com/science/article/pii/S2351989418300945

  • Vera C, Silvestri G, Liebmann B et al (2006) Climate change scenarios for seasonal precipitation in south america from ipcc-ar4 models. Geophysical Research Letters 33(13). https://doi.org/10.1029/2006GL025759

  • Viegas J, Andreoli RV, Kayano MT et al (2019) Caracterização dos diferentes tipos de El Niño e seus impactos na américa do sul a partir de dados observados e modelados. Revista Brasileira de Meteorologia 34(34). https://doi.org/10.1590/0102-7786334015

  • Wang H, Zhang Y, Shao X (2021) A tree-ring-based drought reconstruction from 1466 to 2013 ce for the aksu area, western china. Climatic Change 165

  • White W, Lean J, Cayan D et al (1997) Response of global upper ocean temperature to changing solar irradiance. Journal of Geophysical Research 102:3255–3266. https://doi.org/10.1029/96JC03549

    Article  Google Scholar 

  • Zhang T, Shang H, Fan Y et al (2020) A 475-year tree-ring-width record of streamflow for the qingshui river originating in the southern slope of the central tianshan mountains, china. Geografiska Annaler: Series A, Physical Geography 102(3):247–266. https://doi.org/10.1080/04353676.2020.1769887

    Article  Google Scholar 

  • Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? Journal of Climate 11(5):1020–1040. https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FAPESP (2009/02907-8), CAPES (88881.624415/2021-01), and CNPq (305249/2018-5, 308258/2021-5, and 407896/2021-0) for the financial support to perform fieldwork and scholarships.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to data analysis, methodology development, and writing and reviewing the manuscript

Corresponding author

Correspondence to Daniela Oliveira Silva Muraja.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Virginia Klausner, Alan Prestes and Iuri Rojahn da Silva contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muraja, D.O.S., Klausner, V., Prestes, A. et al. Ocean–atmosphere interaction identified in tree-ring time series from southern Brazil using cross-wavelet analysis. Theor Appl Climatol 153, 1177–1189 (2023). https://doi.org/10.1007/s00704-023-04456-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-023-04456-7

Navigation