Skip to main content

Advertisement

Log in

Techniques to preprocess the climate projections—a review

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Model-derived climate projections have been used by decision-makers for climate change impact assessment, adaptation, and vulnerability studies at large scale. However, they are reported to have significant bias against observed data. The accuracy of dynamically downscaled data depends on the large-scale forcings; however, they still have some systematic errors, so it requires further bias correction. Before using these data for further studies, they need to be processed for performance evaluation. This review article provides current understanding in the field of analyzing global climate projections. It includes studies from the multi-criteria decision-making approaches along with its pros/cons to the performance evaluation of climate models. Moreover, this article discusses several bias correction approaches, multi-model ensemble approaches, and their applications for climate change studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abadi AM, Oglesby R, Rowe C, Mawalagedara R (2018) Evaluation of GCMs historical simulations of monthly and seasonal climatology over Bolivia. Clim. Dyn 51(1):733–754

    Google Scholar 

  • Abu-Taha R (2011) Multi-criteria applications in renewable energy analysis: a literature review. In Proceedings of PICMET'11: Technology Management in the Energy Smart World (PICMET),IEEE:1-8.

  • Abu-Taleb MF, Mareschal B (1995) Water resources planning in the Middle East: application of the PROMETHEE V multicriteria method. Eur. J. Oper. Res 81(3):500–511

    Google Scholar 

  • Acharya N, Kar SC, Kulkarni MA, Mohanty UC, Sahoo LN (2011) Multi-model ensemble schemes for predicting northeast monsoon rainfall over Peninsular India. J Earth Syst Sci 120(5):795–805

    Google Scholar 

  • Acharya N, Chattopadhyay S, Mohanty UC, Dash SK, Sahoo LN (2013) On the bias correction of general circulation model output for Indian summer monsoon. Meteorol Appl 20(3):349–356

    Google Scholar 

  • Acharya N, Shrivastava NA, Panigrahi BK, Mohanty UC (2014) Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over South Peninsular India: an application of extreme learning machine. Clim dynam 43(5-6):1303–1310

    Google Scholar 

  • Adamowski K, Bougadis J (2003) Detection of trends in annual extreme rainfall. Hydrol. Process 17(18):3547–3560

    Google Scholar 

  • Ahmadalipour A, Rana A, Moradkhani H, Sharma A (2017) Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis. Theor appl climatol 128(1-2):71–87

    Google Scholar 

  • Aich V, Liersch S, Vetter T, Huang S, Tecklenburg J, Hoffmann P, Koch H, Fournet S, Krysanova V, Müller EN, Hattermann FF (2014) Comparing impacts of climate change on streamflow in four large African river basins. Hydrol Earth System Sci 18(4):1305–1321

    Google Scholar 

  • Ajaaj AA, Mishra AK, Khan AA (2016) Comparison of BIAS correction techniques for GPCC rainfall data in semi-arid climate. Stoch. Environ. Res risk assess 30(6):1659–1675

    Google Scholar 

  • Alavi I (2014) Fuzzy AHP method for plant species selection in mine reclamation plans: case study Sungun copper mine. Iran J Fuzzy Syst 11(5):23–38

    Google Scholar 

  • Alcamo J, Flörke M, Märker M (2007, 52) Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrol Sci J (2):247–275

  • Al-Harbi KM (2001) Application of the AHP in project management. Int J Proj Manag 19:19–27

    Google Scholar 

  • Araya A, Jha PK, Zambreski Z, Faye A, Ciampitti IA, Min D, Prasad PVV (2022) Evaluating crop management options for sorghum, pearl millet and peanut to minimize risk under the projected midcentury climate scenario for different locations in Senegal. Clim. Risk Manag 36:100436

    Google Scholar 

  • Asadieh B, Krakauer NY (2015) Global trends in extreme precipitation: climate models versus observations. Hydrol Earth Syst Sci 19(2):877–891

    Google Scholar 

  • Asseng S, Ewert F, Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn PJ, Rötter RP, Cammarano D, Brisson N (2013) Uncertainty in simulating wheat yields under climate change. Nat. clim. change 3(9):827–832

    Google Scholar 

  • Asseng S, Ewert F, Martre P, Rötter RP, Lobell DB, Cammarano D, Zhu Y (2015) Rising temperatures reduce global wheat production. Nature Clim. Change 5(2):143–147

    Google Scholar 

  • Aydogmus HY, Erdal Hİ, Karakurt O, Namli E, Turkan YS, Erdal H (2015) A comparative assessment of bagging ensemble models for modeling concrete slump flow. Comput. Concr 16(5):741–757

    Google Scholar 

  • Ayhan MB (2013) A fuzzy AHP approach for supplier selection problem: a case study in a gear motor company. Int. j. manag. value supply chains 4(3):11–23

    Google Scholar 

  • Beccali M, Cellura M, Ardente D (1998) Decision making in energy planning: the ELECTRE multicriteria analysis approach compared to a FUZZY-SETS methodology.Energy Convers. Manag 39(16-18):1869–1881

    Google Scholar 

  • Belton V, Stewart T (2002) Multiple criteria decision analysis: an integrated approach. Springer Science & Business Media

    Google Scholar 

  • Beşikçi EB, Kececi T, Arslan O, Turan O (2016) An application of fuzzy-AHP to ship operational energy efficiency measures. Ocean Eng 121:392–402

    Google Scholar 

  • Bhattacharya S, Sharma C, Dhiman RC, Mitra AP (2006) Climate change and malaria in India. Curr. Sci 90(3):369

    Google Scholar 

  • Bohm U, Kucken M, Hauffe D, Gerstengarbe F, Werner P et al (2004) Reliability of regional climate model simulations of extremes and of long-term climate. Nat Hazards Earth Syst Sci 4:417–431

    Google Scholar 

  • Boote KJ, Prasad V, Allen LH Jr, Singh P, Jones JW (2018) Modeling sensitivity of grain yield to elevated temperature in the DSSAT crop models for peanut, soybean, dry bean, chickpea, sorghum, and millet. Eur J Agron 100:99–109

    Google Scholar 

  • Boran FE, Genç S, Kurt M, Akay D (2009) A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. Appl 36(8):11363–11368

    Google Scholar 

  • Brans JP, Vincke P (1985) Note—a preference ranking organisation method: (the PROMETHEE method for multiple criteria decision-making). Manag. Sci 31(6):647–656

    Google Scholar 

  • Brown JN, Gupta AS, Brown JR, Muir LC, Risbey JS, Whetton P et al (2013) Implications of CMIP3 model biases and uncertainties for climate projections in the western tropical Pacific. Clim Chang 119(1):147–161

    Google Scholar 

  • Caballero Y, Voirin Morel S, Habets F, Noilhan J, Le Moigne P, Lehenaff A, Boone A (2007) Hydrological sensitivity of the Adour-Garonne river basin to climate change. Water Resour. Res 43(7)

  • Cannon AJ (2015) Selecting GCM scenarios that span the range of changes in a multi-model ensemble: application to CMIP5 climate extremes indices. J Clim 28(3):1260–1267

    Google Scholar 

  • Cantelaube P, Terres JM (2005) Seasonal weather forecasts for crop yield modelling in Europe. Tellus A 57:476–487

    Google Scholar 

  • Casimiro E, Calheiros J, Santos FD, Kovats S (2006) National assessment of human health effects of climate change in Portugal: approach and key findings. Environ. Health Perspect 114(12):1950–1956

    Google Scholar 

  • Challinor AJ, Simelton ES, Fraser ED, Hemming D, Collins M (2010) Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environ. Res. Lett 5(3):034012

    Google Scholar 

  • Chen J, Brissette FP, Chaumont D, Braun M (2013) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour. Res 49(7):4187–4205

    Google Scholar 

  • Chen JF, Hsieh HN, Do QH (2015) Evaluating teaching performance based on fuzzy AHP and comprehensive evaluation approach. Appl Soft Comput 28:100–108

    Google Scholar 

  • Cheng EW, Li H (2001) Information priority-setting for better resource allocation using analytic hierarchy process (AHP). Inform Manage Comp Sec 9(2):61–70

    Google Scholar 

  • Chowdhury P, Behera MR (2019) Evaluation of CMIP5 and CORDEX derived wave climate in Indian Ocean. Clim. Dyn 52(7-8):4463–4482

    Google Scholar 

  • Dağdeviren M (2008) Decision making in equipment selection: an integrated approach with AHP and PROMETHEE. J. Intell. Manuf 19(4):397–406

    Google Scholar 

  • DeAngelis AM, Broccoli AJ, Decker SG (2013) A comparison of CMIP3 simulations of precipitation over North America with observations: daily statistics and circulation features accompanying extreme events. J Clim 26(10):3209–3230

    Google Scholar 

  • Deng H, Yeh CH, Willis RJ (2000) Inter-company comparison using modified TOPSIS with objective weights. Comput Oper Res 27(10):963–973

    Google Scholar 

  • Dong YS, Han KS (2004) A comparison of several ensemble methods for text categorization. In: IEEE International Conference on Services Computing, 2004. (SCC 2004). Proceedings. 2004. IEEE, pp 419–422

    Google Scholar 

  • Ebi KL, Hartman J, Chan N, McConnell J, Schlesinger M, Weyant J (2005) Climate suitability for stable malaria transmission in Zimbabwe under different climate change scenarios. Clim. Change 73:375–393

    Google Scholar 

  • Eden JM, Widmann M, Maraun D, Vrac M (2014) Comparison of GCM-and RCM-simulated precipitation following stochastic postprocessing. J Geophys Res Atmos 119(19):11–040

    Google Scholar 

  • El Kenawy AM, McCabe MF (2017) Future projections of synoptic weather types over the Arabian Peninsula during the twenty-first century using an ensemble of CMIP5 models. Theor Appl Climatol 130(1-2):173–189

    Google Scholar 

  • Feng J, Lee DK, Fu C, Tang J, Sato Y, Kato H, ... & MabuchiK (2011) Comparison of four ensemble methods combining regional climate simulations over Asia. Meteorol Atmospheric Phys 111(1):41-53.

  • Field CB, Barros V, Stocker TF, Dahe Q (eds) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge University Press

    Google Scholar 

  • Fischer G, Shah M, Tubiello F N, Van Velhuizen, H (2005) Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080 Philos Trans R Soc Lond B Biol Sci, 360(1463):2067-2083.

  • Fleisher DH, Condori B, Quiroz R, Alva A, Asseng S, Barreda C, , Woli P (2017) A potato model intercomparison across varying climates and productivity levels. Glob Change Biol 23(3):1258–1281.

    Google Scholar 

  • Fong PSW, Choi SKY (2000) Final contractor selection using the analytical hierarchy process. Const manag eco 18(5):547–557

    Google Scholar 

  • Fowler HJ, Blenkinsopa S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578

    Google Scholar 

  • Gao Y, Xiao L, Chen D, Xu J, Zhang H (2018) Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau. Int J Climatol 38(3):1285–1297

    Google Scholar 

  • Gaydon DS, Wang E, Poulton PL, Ahmad B, Ahmed F, Akhter S et al (2017) Evaluation of the APSIM model in cropping systems of Asia. Field Crops Res 204:52–75

    Google Scholar 

  • Ghimire U, Srinivasan G, Agarwal A (2019) Assessment of rainfall bias correction techniques for improved hydrological simulation. Int J Climatol 39(4):2386–2399

    Google Scholar 

  • Giménez PO, García-Galiano SG (2018) Assessing regional climate models (RCMs) ensemble-driven reference evapotranspiration over Spain. Water 10(9):1181

    Google Scholar 

  • Giorgi F, Mearns LO (1991) Approaches to the simulation of regional climate change: a review. Rev Geophys 29:191–216

    Google Scholar 

  • Giorgi F, Mearns L (1999) Introduction to special section: regional climate modelling revisited. J. Geophys. Res 104:6335–6352

    Google Scholar 

  • Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the reliability ensemble averaging (REA) method. J Clim 15(10):1141–1158

    Google Scholar 

  • Gómez-Navarro JJ, Raible CC, Bozhinova D, Martius O, García Valero JA, Montávez JP (2018) A new region-aware bias-correction method for simulated precipitation in areas of complex orography. Geosci Model Dev 11(6):2231–2247

    Google Scholar 

  • Gosain AK, Rao S, Basuray D (2006) Climate change impact assessment on hydrology of Indian river basins. Curr. Sci 90(3):346–353

    Google Scholar 

  • Goumas M, Lygerou V (2000) An extension of the PROMETHEE method for decision making in fuzzy environment: ranking of alternative energy exploitation projects. Eur. J. Oper. Res 123(3):606–613

    Google Scholar 

  • Hajat S, Vardoulakis S, Heaviside C, Eggen B (2014) Climate change effects on human health: projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s. J Epidemiol Community Health 68(7):641–648

    Google Scholar 

  • Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts (ENSEMBLES), ENSEMBLES Technical Report No. 1.

    Google Scholar 

  • Hokkanen J, Salminen P, Rossi E, Ettala M (1995) The choice of a solid waste management system using the ELECTRE II decision-aid method. Waste Manag Res 13(2):175-193.

  • Hsieh TY, Lu ST, Tzeng GH (2004) Fuzzy MCDM approach for planning and design tenders selection in public office buildings. Int. J. Constr. Proj. Manag 22(7):573–584

    Google Scholar 

  • Huth R, Pokorna L (2005) Simultaneous analysis of climatic trends in multiple variables: an example of application of multivariate statistical methods. Int J Clim 25:469–484

    Google Scholar 

  • Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications. Springer-Verlag, New York

    Google Scholar 

  • Iizumi T, Takikawa H, Hirabayashi Y, Hanasaki N, Nishimori M (2017) Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes. J Geophys Res Atmos 122(15):7800–7819

    Google Scholar 

  • INCCA report (2012) India second national communication to the United Nations framework convention on climate change. Ministry of Environment and Forests, New Delhi, pp 135–139

    Google Scholar 

  • Islam A, Sikka AK, Saha B, Singh A (2012) Streamflow response to climate change in the Brahmani River basin, India. Water Resour. Manag 26(6):1409–1424

    Google Scholar 

  • Jiang Z, Li W, Xu J, Li L (2015) Extreme precipitation indices over China in CMIP5 models. Part I: model evaluation. J Clim 28(21):8603–8619

    Google Scholar 

  • Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter, UK.

    Google Scholar 

  • Jukic S, Saracevic M, Subasi A, Kevric J (2020) Comparison of ensemble machine learning methods for automated classification of focal and non-focal epileptic EEG signals. Mathematics 8(9):1481

    Google Scholar 

  • Karadayi MA,Karsak EE (2014)Fuzzy MCDM approach for health-care performance assessment in Istanbul, In Proceedings of The 18th World Multi-Conference on Systemics, Cybernetics and Informatics 228-233.

  • Khaliq MN, St-Hilaire A, Ouarda T, Bobee B (2005) Frequency analysis and temporal pattern of occurrences of southern Quebec heatwaves. Int J Clim 25:485–504

    Google Scholar 

  • Kharin VV, Zwiers FW (2002) Notes and correspondence: climate predictions with multi-model ensembles. J. Clim 15:793–799

    Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444

    Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Chang 119(2):345–357

    Google Scholar 

  • Khoram MR, Shariat M, Azar A, Moharamnejad N, Mahjub H (2007) Prioritizing the strategies and methods of treated wastewater reusing by fuzzy analytic hierarchy process (FAHP): a case study Int J Agri Biol, (Pakistan)

  • Kim KH, Cho J (2016) Predicting potential epidemics of rice diseases in Korea using multi-model ensembles for assessment of climate change impacts with uncertainty information. Clim change 134(1-2):327–339

    Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J. Clim 23(10):2739–2758

    Google Scholar 

  • Kodra E, Steinhaeuser K, Ganguly AR (2011) Persisting cold extremes under 21st-century warming scenarios. Geophys. res. Lett 38(8)

  • Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley-Interscience, New York

    Google Scholar 

  • Kurttila M, Pesonen M, Kangas J, Kajanus M (2000) Utilizing the analytic hierarchy process (AHP) in SWOT analysis—a hybrid method and its application to a forest-certification case. For pol econ 1(1):41–52

    Google Scholar 

  • Kurukulasuriya P, Mendelsohn R (2007) A Ricardian analysis of the impact of climate change on African cropland. In: Policy Research Working Papers. The World Bank

    Google Scholar 

  • Lee WB, Lau H, Liu ZZ, Tam S (2001) A fuzzy analytic hierarchy process approach in modular product design. Expert Syst 18(1):32–42

    Google Scholar 

  • Leggett J, Pepper WJ, Swart RJ, Edmonds J, Meira Filho LG, Mintzer I, Wang MX (1992) Emissions scenarios for the IPCC: an update. Clim. change 1040:75–95

    Google Scholar 

  • Li Y-M, Lai C-Y, Kao C-P (2011) Building a qualitative recruitment system via SVM with MCDM approach. Appl. Intell 35(1):75–88

    Google Scholar 

  • Lobell DB, Sibley A, Ortiz-Monasterio JI (2012) Extreme heat effects on wheat senescence in India. Nature Clim. Change 2(3):186–189

    Google Scholar 

  • Lotfi M, Javadi M, Osório GJ, Monteiro C, Catalão JP (2020) A novel ensemble algorithm for solar power forecasting based on kernel density estimation. Energies 13(1):216

    Google Scholar 

  • Luo M, Liu T, Meng F, Duan Y, Frankl A, Bao A, De Maeyer P (2018) Comparing bias correction methods used in downscaling precipitation and temperature from regional climate models: a case study from the Kaidu River Basin in Western China. Water 10(8):1046

    Google Scholar 

  • Lutz AF, ter Maat HW, Biemans H, Shrestha AB, Wester P, Immerzeel WW (2016) Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. Int J Climatol 36(12):3988–4005

    Google Scholar 

  • Mandal S, Simonovic SP (2017) Quantification of uncertainty in the assessment of future streamflow under changing climate conditions. Hydrol process 31(11):2076–2094

    Google Scholar 

  • Mareschal B, Mertens D (1992) BANKS a multicriteria, PROMETHEE-based, decision support system for the evaluation of the international banking sector. J Decis Syst 1(2-3):175–189

    Google Scholar 

  • Mary SASA, Suganya G (2016) Multi-criteria decision making using ELECTRE. Circuits Syst 7:1008–1020

    Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    Google Scholar 

  • Mendez M, Maathuis B, Hein-Griggs D, Alvarado Gamboa LF (2020) Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica. Water 12(2):482

    Google Scholar 

  • Meixner O (2009) Fuzzy AHP group decision analysis and its application for the evaluation of energy sources. In: Proceedings of the 10th International Symposium on the Analytic Hierarchy/Network Process, Pittsburgh, PA, USA ( 29) , July 2009

  • Min SK, Hense A (2006) A Bayesian approach to climate model evaluation and multi-model averaging with an application to global mean surface temperatures from IPCC AR4 coupled climate models. Geophys Res Lett 33(8)

  • Mishra V, Kumar D, Ganguly AR, Sanjay J, Mujumdar M, Krishnan R, Shah RD (2014) Reliability of regional and global climate models to simulate precipitation extremes over India. J Geophys Res Atmos 119(15):9301–9323

    Google Scholar 

  • Morais DC, Almeida AT (2006) Water supply system decision making using multicriteria analysis. Water Sa 32(2):229–236

    Google Scholar 

  • Morán-Tejeda E, Zabalza J, Rahman K, Gago-Silva A, López-Moreno JI, Vicente-Serrano S, Lehmann A, Tague CL, Beniston M (2015) Hydrological impacts of climate and land-use changes in a mountain watershed: uncertainty estimation based on model comparison. Ecohydrology 8:1396–1416

    Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756

    Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, Vries BD, Fenhann J, Gaffin S, Zhou D (2000) Special report on emissions scenarios. Cambridge University Press 612

    Google Scholar 

  • Naresh Kumar S, Bai KK, Rajagopal V, Aggarwal P (2008) Simulating coconut growth, development and yield with the InfoCrop-coconut model. Tree physiol 28(7):1049–1058

    Google Scholar 

  • Naresh Kumar S, Aggarwal PK, Saxena R, Rani S, Jain S, Chauhan N (2013) An assessment of regional vulnerability of rice to climate change in India. Clim. Change 118(3–4):683–699

    Google Scholar 

  • Naresh Kumar S, Aggarwal PK, Uttam K, Surabhi J, Rani S, Chauhan N, Saxena R (2016) Vulnerability of Indian mustard (Brassica juncea (L.) Czernj. Cosson) to climate variability and future adaptation strategies. Mitig Adapt Strateg Glob Chang 21:403–420

    Google Scholar 

  • Nath R, Cui X, Nath D, Graf HF, Chen W, Wang L et al (2017) CMIP5 multimodel projections of extreme weather events in the humid subtropical Gangetic Plain region of India. Earth’s Future 5(2):224–239

    Google Scholar 

  • Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Van H, Meijgaard AE, Samuelsson P, Sylla MB, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. JCLI 25(18):6057–6078

    Google Scholar 

  • Nydick RL, Hill RP (1992) Using the analytic hierarchy process to structure the supplier selection procedure. Int. j. purch. mater. manage 28(2):31–36

    Google Scholar 

  • Nyunt CT, Yamamoto H, Yamamoto A, Nemoto T, Kitsuregawa M, Koike T (2012) Application of bias-correction and downscaling method to Kalu Ganga basin in Sri Lanka. J Japan Soc Civil Eng Ser. B1 (Hydraulic Engineering) 68(4):I_115–I_120

    Google Scholar 

  • Oddershede Herrera A, Carrasco González R, Abu-Muhor EB (2008) Multi-criteria decision model for assessing health service information technology network support using the analytic hierarchy process. Computación y Sistemas 12(2):173–182

    Google Scholar 

  • Oltean-Dumbrava C (2006) Improving housing design performance using ELECTRE III. Int. J. Hous. Sci. Its Appl 30(1):1

    Google Scholar 

  • Pandey BK, Gosain AK, Paul G, Khare D (2017) Climate change impact assessment on hydrology of a small watershed using semi-distributed model. Appl. Water Sci 7(4):2029–2041

    Google Scholar 

  • Parikh JK (1992) IPCC strategies unfair to the south. Nature 360(6404):507–508

    Google Scholar 

  • Park C, Min SK, Lee D, Cha DH, Suh MS, Kang HS, Kwon WT (2016) Evaluation of multiple regional climate models for summer climate extremes over East Asia. Climate Dyn 46(7-8):2469–2486

    Google Scholar 

  • Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob environ change 14(1):53–67

    Google Scholar 

  • Pereira JM, Duckstein L (1993) A multiple criteria decision-making approach to GIS-based land suitability evaluation. Int. J. Geogr. Inf. Syst 7(5):407–424

    Google Scholar 

  • Pourkhabbaz H, Javanmardi S, Yavari AR, Sabokbar HF (2013) Application of multi criteria decision making method and the integrated ANP-DEMATEL model for agricultural land suitability analysis (case study: Qazvin Plain). J. Environ. Sci. Stud 39(3):35

    Google Scholar 

  • Raffinot T, Benoit S (2018) Investing through economic cycles with ensemble machine learning algorithms. Available at SSRN 2785583

  • Raju KS, Kumar DN (2014) Ranking of global climate models for India using multi criterion analysis.Clim. Res 60:103–117

    Google Scholar 

  • Raju KS, Kumar DN (2015) Ranking general circulation models for India using TOPSIS. J Water Clim Change 6(2):288–299

    Google Scholar 

  • Raju KS, Kumar DN (2016) Selection of global climate models for India using cluster analysis. J Water Clim Change 7(4):764–774

    Google Scholar 

  • Raju KS, Sonali P, Kumar DN (2017) Ranking of CMIP5-based global climate models for India using compromise programmming. Theor appl climatol 128(3-4):563–574

    Google Scholar 

  • Ramanathan R (2001) A note on the use of the analytic hierarchy process for environmental impact assessment. J environ manage 63(1):27–35

    Google Scholar 

  • Rana A, Nikulin G, Kjellström E, Strandberg G, Kupiainen M, Hansson U, Kolax M (2020) Contrasting regional and global climate simulations over South Asia. Clim Dyn 54(5):2883–2901

    Google Scholar 

  • Raneesh KY, Thampi SG (2013) Bias correction for RCM predictions of precipitation and temperature in the Chaliyar River Basin. J Climatol Weather Forecast:1–7

  • Raymundo R, Asseng S, Robertson R, Petsakos A, Hoogenboom G, Quiroz R et al (2018) Climate change impact on global potato production. Eur J agron 100:87–98

    Google Scholar 

  • Reichler T, Kim J (2008) How well do coupled models simulate today's climate? Bull. Am. Meteorol. Soc 89(3):303–311

    Google Scholar 

  • Ringard J, Seyler F, Linguet L (2017) A quantile mapping bias correction method based on hydroclimatic classification of the Guiana shield. Sensors 17(6):1413

    Google Scholar 

  • Rogers M, Bruen M (2000) Using ELECTRE III to choose route for Dublin port motorway. J. Transp. Eng 126(4):313–323

    Google Scholar 

  • Rojas R, Feyen L, Watkiss P (2013) Climate change and river floods in the European Union: socio-economic consequences and the costs and benefits of adaptation. Glob Environ Change 23(6):1737–1751

    Google Scholar 

  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A et al (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci U S A 111(9):3268–3273

    Google Scholar 

  • Roy B (1991) The outranking approach and the foundations of ELECTRE methods. Theory Decis 31(1):49–73

    Google Scholar 

  • Roy Bhowmik SK, Durai VR (2008) Multi-model ensemble forecasting of rainfall over Indian monsoon region. Atmosfera 21(3):225–239

    Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York, USA

    Google Scholar 

  • Saini R, Wang G, Yu M, Kim J (2015) Comparison of RCM and GCM projections of boreal summer precipitation over Africa. J Geophys Res Atmos 120(9):3679–3699

    Google Scholar 

  • Salman SA, Shahid S, Ismail T, Ahmed K, Wang XJ (2018) Selection of climate models for projection of spatiotemporal changes in temperature of Iraq with uncertainties. Atmos. Res 213:509–522

    Google Scholar 

  • Salman SA, Shahid S, Ismail T, Al-Abadi AM, Wang XJ, Chung ES (2019) Selection of gridded precipitation data for Iraq using compromise programming. Measurement 132:87–98

    Google Scholar 

  • Schlesinger ME, Malyshev S (2001) Changes in near-surface temperature and sea level for the post-SRES CO2-stabilization scenarios. Integr Assess 2(3):95–110

    Google Scholar 

  • Schliep EM, Cooley D, Sain SR, Hoeting JA (2010) A comparison study of extreme precipitation from six different regional climate models via spatial hierarchical modeling. Extremes 13(2):219–239

    Google Scholar 

  • Schmidli J, Frei C, Vidale PL (2006) Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. Int J Climatol 26(5):679–689

    Google Scholar 

  • Semenov MA, Stratonovitch P (2010) Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim. Res 41(1):1–4

    Google Scholar 

  • Seyedmohammadi J, Sarmadian F, Jafarzadeh AA, Ghorbani MA, Shahbazi F (2018) Application of SAW, TOPSIS and fuzzy TOPSIS models in cultivation priority planning for maize, rapeseed and soybean crops. Geoderma 310:178–190

    Google Scholar 

  • Shah RD, Mishra V (2015) Development of an experimental near-real-time drought monitor for India. J. Hydrometeorol 16:327–345

    Google Scholar 

  • Shen M, Chen J, Zhuan M, Chen H, Xu CY, Xiong L (2018) Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. J. Hydrol 556:10–24

    Google Scholar 

  • Shin JY, Lee T, Park T, Kim S (2019) Bias correction of RCM outputs using mixture distributions under multiple extreme weather influences. Theor. Appl. Climatol 137(1-2):201–216

    Google Scholar 

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res Atmos 118(4):1716–1733

    Google Scholar 

  • Singh P, Kumar N (1997) Impact assessment of climate change on the hydrological response of a snow and glacier melt runoff dominated Himalayan River. J. Hydrol 193(1):316–350

    Google Scholar 

  • Singh A, Prasher A (2019) A measuring healthcare service quality from patients’ perspective: using fuzzy AHP application. Tot Qual Manage Bus Excell 30(3-4):284–300

    Google Scholar 

  • Singh A, Acharya N, Mohanty UC, Mishra G (2013) Performance of multi model canonical correlation analysis (MMCCA) for prediction of Indian summer monsoon rainfall using GCMs output. CR Geosci 345(2):62–72

    Google Scholar 

  • Singh S, Ghosh S, Sahana AS, Vittal H, Karmakar S (2017) Do dynamic regional models add value to the global model projections of Indian monsoon? Clim Dyn 48(3):1375–1397

    Google Scholar 

  • Singh V, Jain SK, Singh PK (2019) Inter-comparisons and applicability of CMIP5 GCMs, RCMs and statistically downscaled NEX-GDDP based precipitation in India. Sci. Total Environ 697:134163

    Google Scholar 

  • Song YH, Chung ES, Shiru MS (2020) Uncertainty analysis of monthly precipitation in GCMs using multiple bias correction methods under different RCPs. Sustainability 12(18):7508

    Google Scholar 

  • Srdjevic B, Medeiros YDP (2008) Fuzzy AHP assessment of water management plans. Water Res Manage 22(7):877–894

    Google Scholar 

  • Srichetta P, Thurachon W (2012) Applying fuzzy analytic hierarchy process to evaluate and select product of notebook computers. Int J Model Optim 2(2):168

    Google Scholar 

  • Suh MS, Oh SG, Lee DK, Cha DH, Choi SJ, Jin CS, Hong SY (2012) Development of new ensemble methods based on the performance skills of regional climate models over South Korea. J Clim 25(20):7067–7082

    Google Scholar 

  • Taibi A, Atmani B (2017) Combining fuzzy AHP with GIS and decision rules for industrial site selection. Int J Interact Multi 4(6):60

    Google Scholar 

  • Tang YC, Beynon MJ (2005) Application and development of a fuzzy analytic hierarchy process within a capital investment study. J Econ Manage 1(2):207–230

    Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) An intercomparison of model-simulated historical and future changes in extreme events. Clim. Change 79:185–211

    Google Scholar 

  • Teklesadik AD, Alemayehu T, van Griensven A, Kumar R, Liersch S, Eisner S, Tecklenburg J, Ewunte S, Wang X (2017) Inter-model comparison of hydrological impacts of climate change on the upper Blue Nile basin using ensemble of hydrological models and global climate models. Clim Change 141(3):517–532

    Google Scholar 

  • Terink W, Hurkmans RTW, Torfs PJJF, Uijlenhoet R (2010) Evaluation of a bias correction method applied to downscaled precipitation and temperature reanalysis data for the Rhine basin. Hydrol earth syst sci 14(4):687–703

    Google Scholar 

  • Tesfamariam S, Sadiq R (2006) Risk-based environmental decision-making using fuzzy analytic hierarchy process (F-AHP). Stoch Environ Res Risk Assess 21(1):35–50

    Google Scholar 

  • Tewari S, Dwivedi UD (2020) A comparative study of heterogeneous ensemble methods for the identification of geological lithofacies. J Pet Explor Prod Technol 10(5):1849–1868

    Google Scholar 

  • Thakur V, Ramesh A (2015) Selection of waste disposal firms using grey theory based multi-criteria decision making technique. Procedia Soc Behav Sci 189:81–90

    Google Scholar 

  • Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, Morse AP, Palmer TN (2006) Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439:576–579

    Google Scholar 

  • Thrasher B, Maurer EP, McKellar C, Duffy PB (2012) Bias correcting climate model simulated daily temperature extremes with quantile mapping. HESS 16(9):3309–3314

    Google Scholar 

  • TML W, SCB R, Hulme M, Smith S (2000) The MAGICC/SCENGEN Climate Scenario Generator: Version 2.4. Technical Manual, Climatic Research Unit, Norwich

  • Tolga E, Demircan ML, Kahraman C (2005) Operating system selection using fuzzy replacement analysis and analytic hierarchy process. Int J Prod Econ 97(1):89–117

    Google Scholar 

  • Tong Y, Gao X, Han Z, Xu Y, Xu Y, Giorgi F (2020) Bias correction of temperature and precipitation over China for RCM simulations using the QM and QDM methods. Clim Dyn 57(5-6):1425–1443

    Google Scholar 

  • Usman AG, Işik S, Abba SI (2020) A novel multi-model data-driven ensemble technique for the prediction of retention factor in HPLC method development. Chromatographia 83:933–945

    Google Scholar 

  • Uyan M (2013) GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renewable Sustainable Energy Rev 28:11–17

    Google Scholar 

  • Vernimmen RRE, Hooijer A, Aldrian E, Van Dijk AIJM (2012) Evaluation and bias correction of satellite rainfall data for drought monitoring in Indonesia. Hydrol Earth Syst Sci 16(1):133–146

    Google Scholar 

  • Vichot-Llano A, Martinez-Castro D, Giorgi F, Bezanilla-Morlot A, Centella-Artola A (2020) Comparison of GCM and RCM simulated precipitation and temperature over Central America and the Caribbean. Theor. ApplClimatol 143(1-2):389–402

    Google Scholar 

  • Vogel E , Donat M G , Alexander L V , Meinshausen M , Ray D K , Karoly D Frieler K (2019) The effects of climate extremes on global agricultural yields Environ Res Lett 14(5): 054010.

    Google Scholar 

  • Vrugt JA, Robinson BA (2007) Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging. Water Resour Res 43(1)

  • Wang G, Hao J, Ma J, Jiang H (2011) A comparative assessment of ensemble learning for credit scoring. Expert syst appl 38(1):223–230

    Google Scholar 

  • Wang B, Zheng L, Liu DL, Ji F, Clark A, Yu Q (2018) Using multi-model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia. Int J Climatol 38(13):4891–4902

    Google Scholar 

  • Wilcke RA, Bärring L (2016) Selecting regional climate scenarios for impact modelling studies. Environ Modell Soft 78:191–201

    Google Scholar 

  • Woldemeskel FM, Sharma A, Sivakumar B, Mehrotra R (2016) Quantification of precipitation and temperature uncertainties simulated by CMIP3 and CMIP5 models. J. Geophys. Res. Atmos 121(1):3–17

    Google Scholar 

  • Wood AW, Maurer EP, Kumar A, Lettenmaier DP (2002) Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res. (Atmos.) 107:4429

    Google Scholar 

  • Wu FG, Lee YJ, Lin MC (2004) Using the fuzzy analytic hierarchy process on optimum spatial allocation. Int J Ind Ergon 33(6):553–569

    Google Scholar 

  • Wu HY, Chen JK, Chen IS, Zhuo HH (2012) Ranking universities based on performance evaluation by a hybrid MCDM model. Measurement 45(5):856–880

    Google Scholar 

  • Yang Y, Luo Y (2014) Using the back propagation neural network approach to bias correct TMPA data in the arid region of northwest China. J Hydrometeorol 15(1):459–473

    Google Scholar 

  • Yang T, Tao Y, Li J, Zhu Q, Su L, He X, Zhang X (2018) Multi-criterion model ensemble of CMIP5 surface air temperature over China. Theor Appl Climatol 132(3-4):1057–1072

    Google Scholar 

  • Yao Y, Luo Y, Huang J, Zhao Z (2013) Comparison of monthly temperature extremes simulated by CMIP3 and CMIP5 models. J Clim 26(19):7692–7707

    Google Scholar 

  • Yin J, Tsai FTC (2020) Bayesian set pair analysis and machine learning based ensemble surrogates for optimal multi-aquifer system remediation design. J Hydrol 580:124280

    Google Scholar 

  • Yong D (2006) Plant location selection based on fuzzy TOPSIS. Int. J. Adv. Manuf. Technol 28(7-8):839–844

    Google Scholar 

  • Zacharias M, Kumar SN, Singh SD, Rani DS, Aggarwal PK (2015) Evaluation of a regional climate model for impact assessment of climate change on crop productivity in the tropics. Curr. Sci:1119–1126

  • Zamani R, Akhond-Ali AM, Roozbahani A, Fattahi R (2017) Risk assessment of agricultural water requirement based on a multi-model ensemble framework, southwest of Iran. Theor Appl Climatol 129(3-4):1109–1121

    Google Scholar 

  • Zhou B, Xu Y, Wu J, Dong S, Shi Y (2016) Changes in temperature and precipitation extreme indices over China: analysis of a high-resolution grid dataset. Int J Climatol 36(3):1051–1066

    Google Scholar 

  • Zyoud SH, Kaufmann LG, Shaheen H, Samhan S, Fuchs-Hanusch D (2016) A framework for water loss management in developing countries under fuzzy environment: integration of fuzzy AHP with fuzzy TOPSIS. Expert Sys Appl 61:86–105

    Google Scholar 

Download references

Availability of data and materials

Not applicable

Code availability

Not applicable

Funding

The authors would like to express their gratitude for supporting the research by providing grants under National Innovations in Climate Resilient Agriculture (NICRA)-ICAR and partial funding under the Department of Science and Technology (DST)-MRDP project, Ministry of Science and Technology, Government of India, to the corresponding author for creating research facilities.

Author information

Authors and Affiliations

Authors

Contributions

SP, collected the literature, synthesis, and draft manuscript. SNK, synthesis, supervision, and manuscript finalization

Corresponding author

Correspondence to Shweta Panjwani.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Shweta Panjwani and S. Naresh Kumar give the consent to participate.

Consent for publication

Shweta Panjwani and S. Naresh Kumar give the consent to publish.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panjwani, S., Kumar, S.N. Techniques to preprocess the climate projections—a review. Theor Appl Climatol 152, 521–533 (2023). https://doi.org/10.1007/s00704-023-04431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-023-04431-2

Navigation