Skip to main content
Log in

Possibility of global gridded streamflow dataset correction: applications of large-scale watersheds with different climates

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Previous studies depicted that the global gridded hydroclimatic products mostly lack precision and are inconsistent throughout the real-world water cycle. The current study evaluates the efficiency of the eight streamflow datasets (FLDAS, GLDAS 2.1, GLDAS 2.0, ERA5, TERRA, ERA5_Land, MERRA2, and GRUN) in two large-scale watersheds with different climate conditions (Karkhe River basin in Iran and Rio Itapecuru River basin in Brazil). To correct the products via different statistical metrics, two tuning procedures (including scale factors and the network-based Muskingum method) have been used. Based on the results showing the paramount impacts on the correction procedures of the products, GRUN, ERA_land, and GLDAS 2 perform the best accuracy in the Karkhe River basin; however, the worst product in the watershed is GLDAS 2.1. In the Rio Itapecuru River basin, MERRA2 and TERRA have the best and worst performance, respectively. In the first watershed, the KGE and TaylorS in GLDAS 2.1 improved by 0.85 and 0.23 in the case of correction using scale factor, and these statistics also significantly increased using coupled scale factor and Muskingum routing methods by 0.84 and 0.21, respectively. In the second watershed, these statistics increased by 9.16 and 0.56 in the worst case using scale factors; these metrics also levelled up by 9.32 and 0.62 via coupled scale factor and Muskingum routing methods. In addition, it appeared that the corrected products could better simulate the streamflow in terms of oscillation time series and the extreme temporal values of the watersheds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets used during the current study are available from the corresponding author on reasonable request.

Code availability

The codes developed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AMSR-E:

Advanced Microwave Scanning Radiometer for EOS

CaMa-Flood:

Catchment-based Macro-scale Floodplain

CHIRPS:

Climate Hazards Group InfraRed Precipitation with Station

CLM:

Community Land Model

CRU:

Climatic Research Unit

ECMWF:

European Centre for Medium-Range Weather Forecasts

ERA5:

ECMWF Reanalysis 5

FLDAS:

FEWS NET Land Data Assimilation System

FEWS NET:

The Famine Early Warning Systems Network

GLDAS:

Global Land Data Assimilation System

EOS :

Earth Observing System

GEOS:

Goddard Earth Observing System Model

GGPs:

Global Gridded Products

GGSPs:

Global Gridded Streamflow Products

GloFAS:

Global Flood Awareness System

GMAO:

Global Modeling and Assimilation Office

GRDC:

Global Runoff Data Centre

GRUN:

Global Runoff Reconstruction

GSWP3:

Global Soil Wetness Project Phase 3

IRF:

Impulse Response Function

JRA55:

Japanese 55-year Reanalysis

KGE:

Kling–Gupta Efficiency

LSMs:

Land Surface Models

MERRA:

The Modern-Era Retrospective Analysis for Research and Applications

LRR:

Linear Reservoir Routing

MP:

Multi-parameterization

NASA:

National Aeronautics and Space Administration

NSE:

Nash–Sutcliffe Efficiency

RAPID:

Routing Application for Parallel Computation of Discharge

RF:

Random forest

RMSE:

Root mean square error

SMC:

Soil Moisture Mean Seasonal Cycles

SMOS:

Soil Moisture Ocean and Salinity

SVE:

Saint Venant Equation

TaylorS:

Taylor skill

TS:

Time-series

TWS:

Terrestrial water storage

VIC:

Variable infiltration capacity

WRF:

Weather Research and Forecasting

References

  • Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC (2018) Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci Data

    Book  Google Scholar 

  • Abramowitz G, Leuning R, Clark M, Pitman A (2008) Evaluating the performance of land surface models. J Climate 21(21):5468–5481

    Article  Google Scholar 

  • Alfieri L, Burek P, Dutra E, Krzeminski B, Muraro D, Thielen J, Pappenberger F (2013) GloFAS–global ensemble streamflow forecasting and flood early warning. Hydrol Earth Syst Sci 17(3):1161–1175

    Article  Google Scholar 

  • Amy McNally NASA/GSFC/HSL (2018) FLDAS Noah Land Surface Model L4 Global Monthly 0.1 x 0.1 degree (MERRA-2 and CHIRPS). In: Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, USA, Goddard. https://doi.org/10.5067/5NHC22T9375G

  • Arnold JG, Williams JR, Maidment DR (1995) Continuous time water and sediment-routing model for large basins. J Hydraul Eng 121:171–183

    Article  Google Scholar 

  • Arora VK, Boer GJ (1999) A variable velocity flow routing algorithm for GCMs. J Geophys Res 104(D24):30965– 30979

  • Arora VK, Chiew FH, Grayson RB (1999) A river flow routing scheme for general circulation models. J Geophys Res: Atmos 104(D12):14347–14357

  • Ashraf Vaghefi S, Mousavi SJ, Abbaspour KC, Srinivasan R, Yang H (2014) Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran. Hydrol Process 28(4):2018–2032

    Article  Google Scholar 

  • Bai, P., Liu, X., Yang, T., Liang, K., Liu, C., 2016. Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan plateau. J Geophys Res: Atmos 121 (20), 12–180. https://doi.org/10.1002/2016jd025501.

  • Balsamo G, Albergel C, Beljaars A et al (2015) ERAInterim/Land: a global land surface reanalysis data set. Hydrol Earth Syst Sci 19:389–407. https://doi.org/10.5194/hess-19-389-2015

    Article  Google Scholar 

  • Beighley RE, Eggert KG, Dunne T, He Y, Gummadi V, Verdin KL (2009) Simulating hydrologic and hydraulic processes throughout the Amazon River basin. Hydrol Processes 23:1221–1235. https://doi.org/10.1002/hyp.7252

    Article  Google Scholar 

  • Branstetter ML, Erickson DJ III (2003) Continental runoff dynamics in the Community Climate SystemModel 2 (CCSM2) control simulation. J Geophys Res 108:4550. https://doi.org/10.1029/2002JD003212

    Article  Google Scholar 

  • Beaudoing H, Rodell M, NASA/GSFC/HSL (2019) GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degree V2.0. In: Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, Maryland, USA, Goddard. https://doi.org/10.5067/9SQ1B3ZXP2C5

  • Beaudoing H, Rodell M, NASA/GSFC/HSL (2020) GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degree V2.1. In: Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, Maryland, USA, Goddard. https://doi.org/10.5067/SXAVCZFAQLNO

  • Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5(1):1–12

    Article  Google Scholar 

  • Burek P, Van Der Knijff J, De Roo A (2013) LISFLOOD, distributed water balance and flood simulation model: Revised user manual. JRC Tech, Rep., p 138

    Google Scholar 

  • Choudhury P (2007) Multiple inflows Muskingum routing model. J Hydrol Eng 12(5):473–481

    Article  Google Scholar 

  • Choubin B, Solaimani K, Rezanezhad F, Roshan MH, Malekian A, Shamshirband S (2019) Streamflow regionalization using a similarity approach in ungauged basins: application of the geo-environmental signatures in the Karkheh River Basin. Iran Catena 182:104128

    Article  Google Scholar 

  • Cools J, Innocenti D, O'Brien S (2016) Lessons from flood early warning systems. Environ Sci Policy 58:117–122. https://doi.org/10.1016/j.envsci.2016.01.006

    Article  Google Scholar 

  • Dadson SJ, Bell VA, Jones RG (2011) Evaluation of a grid-based river flow model configured for use in a regional climate model. J Hydrol 411(3-4):238–250

    Article  Google Scholar 

  • David CH, Habets F, Maidment DR, Yang Z-L (2011a) RAPID applied to the SIMFrance model. Hydrol Process 25(22):3412–3425. https://doi.org/10.1002/hyp.8070

    Article  Google Scholar 

  • David CH, Maidment DR, Niu G-Y, Yang Z-L, Habets F, Eijkhout V (2011b) River network routing on the NHDPlus dataset. J Hydrometeorol 12(5):913–934. https://doi.org/10.1175/2011jhm1345.1

    Article  Google Scholar 

  • David CH, Yang Z-L, Hong S (2013) Regional-scale river flow modeling using off-the shelf runoff products, thousands of mapped rivers and hundreds of streamflow gauges. Environ Model Softw 42:116–132. https://doi.org/10.1016/j.envsoft.2012.12.011

    Article  Google Scholar 

  • Decharme B, Alkama R, Douville H, Becker M, Cazenave A (2010) Global evaluation of the ISBA-TRIP continental hydrological system. Part II: Uncertainties in river routing simulation related to flow velocity and groundwater storage. J Hydromet. https://doi.org/10.1175/2010JHM1212.1

  • Dong J, Crow WT, Tobin KJ, Cosh MH, Bosch DD, Starks PJ, Collins CH (2020) Comparison of microwave remote sensing and land surface modeling for surface soil moisture climatology estimation. Remote Sensing Environ 242:111756

    Article  Google Scholar 

  • Emerton RE, Stephens EM, Pappenberger F, Pagano TC, Weerts AH, Wood AW, Cloke HL (2016) Continental and global scale flood forecasting systems. Wiley Interdiscip Rev: Water 3(3):391–418

    Article  Google Scholar 

  • Follum ML, Tavakoly AA, Niemann JD, Snow AD (2017) AutoRAPID: a model for prompt streamflow estimation and flood inundation mapping over regional to continental extents. JAWRA 53(2):280–299

    Google Scholar 

  • Fereidoon M, Koch M (2018) SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change. Sci Total Environ 630:502–516

    Article  Google Scholar 

  • Scrucca L (2013) GA: a package for genetic algorithms in R. J Stat Softw 53:1–37

    Article  Google Scholar 

  • Ghiggi G, Humphrey V, Seneviratne SI, Gudmundsson L (2019) GRUN: an observation-based global gridded runoff dataset from 1902 to 2014. Earth Syst Sci Data 11:1655–1674. https://doi.org/10.5194/essd-11-1655-2019

    Article  Google Scholar 

  • Ghomlaghi A, Nasseri M, Bayat B (2022) Comparing and contrasting the performance of high-resolution precipitation products via error decomposition and triple collocation: an application to different climate classes of the central Iran. J Hydrol 612:128298

    Article  Google Scholar 

  • Global Modeling and Assimilation Office (GMAO) (2015) MERRA-2 tavgU_2d_lnd_Nx: 2d, Diurnal, Time-averaged, Single-level, Assimilation, Land Surface Diagnostics V5.12.4. In: Earth Sciences Data and Information Services Center (GES DISC), Greenbelt, MD, USA, Goddard. https://doi.org/10.5067/W0J15047CF6N

  • Gong L, Widen-Nilsson E, Halldin S, Xu CY (2009) Largescale runoff routing with an aggregated network-response function. J Hydrol 368:237–250. https://doi.org/10.1016/j.jhydrol.2009.02.007

  • Gorayeb A, Vicente da Silva E, Soares LS, Guimarães de Carvalho R, Davy Braz Rabelo F, Otávio Landim Neto F, Farias JF, Sopchaki CH (2020) Planning and management of the estuarine zones of the coastal regions of Northern-Northeastern Brazil: an approach based on landscape geoecology. J Coastal Res 95(sp1):814–818. https://doi.org/10.2112/SI95-158.1

  • Goteti G, Famiglietti JS, Asante K (2008) A catchment based hydrologic and routing modeling system with explicit river channels. J Geophys Res 113:D14116. https://doi.org/10.1029/2007JD009691

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Biavati G, Horányi A, Muñoz Sabater J, Nicolas J, Peubey C, Radu R, Rozum I, Schepers D, Simmons A, Soci C, Dee D, Thépaut J-N (2019) ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS)

  • Hirpa FA, Salamon P, Beck HE, Lorini V, Alfieri L, Zsoter E, Dadson SJ (2018) Calibration of the Global Flood Awareness System (GloFAS) using daily streamflow data. J Hydrol 566:595–606

    Article  Google Scholar 

  • Holtzman NM, Pavelsky TM, Cohen JS, Wrzesien ML, Herman JD (2020) Tailoring WRF and Noah‐MP to improve process representation of Sierra Nevada runoff: diagnostic evaluation and applications. J Adv Model Earth Syst 12(3):e2019MS001832

    Article  Google Scholar 

  • Jamab Consulting Engineers (2006) Water balance report of Karkheh River basin area: preliminary analysis. Ministry of Energy, Tehran. Iran (In Farsi)

    Google Scholar 

  • Köppen W, Geiger R (eds) (1936) Handbuch der klimatologie (Vol. 1). Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Lehner B, Grill G (2013) Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol Process 27(15):2171–2186. https://doi.org/10.1002/hyp.9740

    Article  Google Scholar 

  • Li H, Sivapalan M (2011) Effect of spatial heterogeneity of runoff generation mechanisms on the scaling behavior of event runoff responses in a natural river basin. Water Resour Res 47(3). https://doi.org/10.1029/2010WR009712

  • Li HY, Wigmosta MS, Wu H et al (2013a) A physically based runoff routing model for land surface and earth system models. J Hydrometeor 14:808–828. https://doi.org/10.1175/jhm-d-12-015.1

    Article  Google Scholar 

  • Li H, Wigmosta MS, Wu H, Huang M, Ke Y, Coleman AM, Leung LR (2013b) A physically based runoff routing model for land surface and earth system models. J Hydrometeorol 14(3):808–828

    Article  Google Scholar 

  • Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res: Atmos 99(D7):14415–14428

    Article  Google Scholar 

  • Lin P, Pan M, Beck HE, Yang Y, Yamazaki D, Frasson R, David CH, Durand M, Pavelsky TM, Allen GH, Gleason CJ, Wood EF (2019) Global reconstruction of naturalized river flows at 2.94 million reaches. Water Resour Res 55. https://doi.org/10.1029/2019WR025287

  • Lin P, Yang Z-L, Gochis DJ, Yu W, Maidment DR, Somos-Valenzuela MA, David CH (2018) Implementation of a vector-based river network routing scheme in the community WRF-Hydro modeling framework for flood discharge simulation. Environ Model Softw 107:1–11. https://doi.org/10.1016/j.envsoft.2018.05.018

    Article  Google Scholar 

  • Liu XC, Liu WF, Yang H et al (2019) Multimodel assessments of human and climate impacts on mean annual streamflow in China. Hydrol Earth Syst Sci 23:1245–1261. https://doi.org/10.5194/hess-23-1245-2019

    Article  Google Scholar 

  • Lohmann D, Nolte-Holube R, Raschke E (1996) A largescale horizontal routing model to be coupled to land surface parametrization schemes. Tellus 48A:708–721

    Article  Google Scholar 

  • Lohmann E, Raschke BN, Lettenmaier DP (1998) Regional scale hydrology: I. Formulation of the VIC-2L model coupled to a routing model. Hydrol Sci J 43:131–141

    Article  Google Scholar 

  • Lucas-Picher P, Arora VK, Caya D, Laprise R (2003) Implementation of a large scale variable velocity river flow routing algorithm in the Canadian Regional Climate Model (CRCM). Atmos–Ocean 41:139–153

    Article  Google Scholar 

  • Maurer EP, Wood AW, Adam JC et al (2002) A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Climate 15:3237–3251. https://doi.org/10.1175/1520-0442(2002)015%3a3237:Althbd%3e2.0.Co;2

    Article  Google Scholar 

  • Miao Y, Wang A (2020a) Evaluation of routed-runoff from land surface models and reanalyses using observed streamflow in Chinese river basins. J Meteorological Res 34(1):73–87

    Article  Google Scholar 

  • Miao Y, Wang A (2020b) A daily 0.25°× 0.25° hydrologically based land surface flux dataset for conterminous China, 1961–2017. J Hydrol 590:125413

    Article  Google Scholar 

  • Miller JR, Russell GL, Caliri G (1994) Continental-scale river flow in climate models. J Climate 7:914–928

    Article  Google Scholar 

  • Molteni F, Buizza R, Palmer TN, Petroliagis T (1996) The ECMWF ensemble prediction system: Methodology and validation. Q J R Meteorol Soc 122(529):73–119

    Article  Google Scholar 

  • Muñoz Sabater J (2019) ERA5-Land monthly averaged data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS)

  • Oki T, Nishimura T, Dirmeyer P (1999) Assessment of annual runoff from land surface models using Total Runoff Integrating Pathways (TRIP). J Meteor Soc Japan 77:235–255

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644

    Article  Google Scholar 

  • Pitman AJ (2003) The evolution of, and revolution in, land surface schemes designed for climate models. Int J Climatol. 23(5):479–510. https://doi.org/10.1002/joc.893

    Article  Google Scholar 

  • Qiao X, Nelson EJ, Ames DP, Li Z, David CH, Williams GP, Matin MA (2019) A systems approach to routing global gridded runoff through local high-resolution stream networks for flood early warning systems. Environ Model Softw 120:104501

    Article  Google Scholar 

  • Reichle RH, Draper CS, Liu Q et al (2017) Assessment of MERRA-2 land surface hydrology estimates. J Climate 30:2937–2960. https://doi.org/10.1175/JCLI-D-16-0720

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The Global Land Data Assimilation System. Bull Amer Meteor Soc 85:381–394. https://doi.org/10.1175/BAMS-853-3811

    Article  Google Scholar 

  • Scanlon BR, Zhang ZZ, Save H et al (2018) Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc Natl Acad Sci USA 115:E1080–E1089. https://doi.org/10.1073/pnas.1704665115

    Article  Google Scholar 

  • Sheng MY, Lei HM, Jiao Y et al (2017) Evaluation of the runoff and river routing schemes in the community land model of the Yellow River basin. J Adv Model Earth Syst 9:2993–3018. https://doi.org/10.1002/2017ms001026

    Article  Google Scholar 

  • Schoups G, Nasseri M (2021) GRACEfully closing the water balance: A data-driven probabilistic approach applied to river basins in Iran. Water Resour Res 57:e2020WR029071. https://doi.org/10.1029/2020WR029071

    Article  Google Scholar 

  • Schumann GJ, Brakenridge GR, Kettner AJ, Kashif R, Niebuhr E (2018) Assisting flood disaster response with earth observation data and products: a critical assessment. Remote Sensing 10(8):1230

    Article  Google Scholar 

  • Sikder MS, David CH, Allen GH, Qiao X, Nelson EJ, Matin MA (2019) Evaluation of available global runoff datasets through a river model in support of transboundary water management in South and Southeast Asia. Sci Submitted for publication, Front. Environ

    Book  Google Scholar 

  • Snow AD, Christensen SD, Swain NR, Nelson EJ, Ames DP, Jones NL, Zsoter E (2016) A high‐resolution national‐scale hydrologic forecast system from a global ensemble land surface model. JAWRA 52(4):950–964

    Google Scholar 

  • Sood, A., Smakhtin, V., 2015. Global hydrological models: a review. Hydrol Sci J 60 (4), 549–565. 10.1080/02626667.2014.950580. Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183-7192.

  • Tavakoly AA, Snow AD, David CH, Follum ML, Maidment DR, Yang ZL (2017) Continental‐scale river flow modeling of the Mississippi River Basin using high‐resolution NHDPlus dataset. JAWRA 53(2):258–279

    Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res: Atmos 106(D7):7183–7192

    Article  Google Scholar 

  • Tian J, Liu J, Wang Y, Wang W, Li C, Hu C (2020) A coupled atmospheric–hydrologic modeling system with variable grid sizes for rainfall–runoff simulation in semi-humid and semi-arid watersheds: how does the coupling scale affects the results? Hydrol Earth Syst Sci 24(8):3933–3949

    Article  Google Scholar 

  • Veras DS, Castro ER, Lustosa GS, de Azevêdo CAS, Juen L (2019) Evaluating the habitat integrity index as a potential surrogate for monitoring the water quality of streams in the cerrado-caatinga ecotone in northern Brazil. Environ Monitoring Assess 191(9):1–9

    Article  Google Scholar 

  • Wang AH, Li KY, Lettenmaier DP (2008) Integration of the variable infiltration capacity model soil hydrology scheme into the community land model. J Geophys. Res. [Atmos.] 113(D9). https://doi.org/10.1029/2007jd009246

  • Wang J, Hong Y, Li L, Gourley JJ, Khan SI, Yilmaz KK, Adler RF, Policelli FS, Habib S, Irwn D, Limaye AS (2011) The coupled routing and excess storage (CREST) distributed hydrological model. Hydrol Sci J 56:84–98

    Article  Google Scholar 

  • Ward PJ, Jongman B, Salamon P, Simpson A, Bates P, De Groeve T, Muis S, de Perez EC, Rudari R, Trigg MA, Winsemius HC (2015) Usefulness and limitations of global flood risk models. Nat Clim Chang 5:712. https://doi.org/10.1038/nclimate2742

    Article  Google Scholar 

  • Wu H, Adler RF, Tian YD et al (2014) Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resour Res 50:2693–2717. https://doi.org/10.1002/2013wr014710

    Article  Google Scholar 

  • Yamazaki D, Kanae S, Kim H, Oki T (2011) A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour Res 47:W04501. https://doi.org/10.1029/2010WR009726

    Article  Google Scholar 

  • Zaitchik BF, Rodell M, Olivera F (2010) Evaluation of the global land data assimilation system using global river discharge data and a source-to-sink routing scheme. Water Resour Res 46:W06507. https://doi.org/10.1029/2009WR007811

    Article  Google Scholar 

  • Zhang XJ, Tang QH, Pan M et al (2014) A long-term land surface hydrologic fluxes and states dataset for China. J Hydrometeor 15:2067–2084. https://doi.org/10.1175/Jhm-D-13-0170.1

    Article  Google Scholar 

  • Zhu CM, Lettenmaier DP (2007) Long-term climate and derived surface hydrology and energy flux data for Mexico: 1925–2004. J Climate 20:1936–1946. https://doi.org/10.1175/JCLI4086.1

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the Global Runoff Data Centre (GRDC) for providing us access to river discharge observations in the Rio Itapecuru River basin (https://www.bafg.de/GRDC/EN/04_spcldtbss/43_GRfN/refDataset_node.html).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Mohsen Nasseri. Methodology: Mohsen Nasseri and Hesam Barkhordari. Formal analysis and investigation: Hesam Barkhordari and Hamidreza Rezazadeh. Writing—original draft preparation: Hesam Barkhordari. Writing—review and editing: Hesam Barkhordari and Mohsen Nasseri. Supervision: Mohsen Nasseri.

Corresponding author

Correspondence to Mohsen Nasseri.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkhordari, H., Nasseri, M. & Rezazadeh, H. Possibility of global gridded streamflow dataset correction: applications of large-scale watersheds with different climates. Theor Appl Climatol 152, 627–647 (2023). https://doi.org/10.1007/s00704-023-04388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-023-04388-2

Keywords

Navigation