Skip to main content

Advertisement

Log in

Change in Temperature Extremes over India Under 1.5 °C and 2 °C Global Warming Targets

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

With rising global warming levels (GWL), the severity and frequency of temperature extremes have also increased across the globe. The rural and poor population of developing countries may be more vulnerable due to their limited reliable and relevant adaptation and mitigation capacities. In this context, we investigate the change in temperature extremes and associated area and population exposure over India under 1.5 °C and 2 °C world warmings. We also examined the benefits of 0.5 °C less warming on the area and population exposure over India. Temperature extremes were calculated from the daily maximum and minimum temperature data of 19 CMIP5 models for the RCP 8.5 scenario. We find that almost all of India is warming greater than the global average under both the warming levels. All the temperature extreme indices exhibit a pronounced increase under 2 °C global warming level (GWL) as compared to 1.5 °C GWL. We find a declining severity of extreme cold events and increasing in warm events. We find the largest warming in the western Himalayan region under both GWLs. A 0.5 °C reduction in GWL will not only limit the severity of temperature extremes but also reduce the population exposure by 44% and the area exposure by 50%. The study provides a reliable and inclusive assessment of projected GWL and the benefits of 0.5 °C less warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The NEX-GDDP-CMIP5 data is available at https://www.nccs.nasa.gov/services/data-collections/land-based-products/nex-gddp for the global land at 0.25* 0.25 grid and the population data are available at 1/8° resolution for the five Shared Socioeconomic Pathways (SSPs). The Population datasets were downloaded from Socioeconomic Data and Applications Centre (SEDAC) https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-km-downscaled-pop-base-year-projection-ssp-2000-2100-rev01/data-download.

Code availability

Available on request.

References

  • Aadhar S, Mishra V (2019) A substantial rise in the area and population affected by dryness in South Asia under 1.5 °C, 2.0 °C and 2.5 °C warmer worlds. Environ Res Lett 14:114021. https://doi.org/10.1088/1748-9326/ab4862

  • Aadhar S, Mishra V (2020) Increased drought risk in South Asia under warming climate: Implications of uncertainty in potential evapotranspiration estimates. J Hydrometeorol 21:2979–2996

    Article  Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres 111. https://doi.org/10.1029/2005JD006290

  • Ali H, Mishra V (2018) The Projected effect of limiting global warming To 1.5 and 2.0°C On urban stormwater design in India. 2018:H41I-2170

  • Ali H, Mishra V, Pai DS (2014) Observed and projected urban extreme rainfall events in India. Journal of Geophysical Research: Atmospheres 119(22):12–621. https://doi.org/10.1002/2014JD022264

    Article  Google Scholar 

  • Andrews O, Quéré CL, Kjellstrom T, Lemke B, Haines A (2018) Implications for workability and survivability in populations exposed to extreme heat under climate change: a modelling study. The Lancet Planetary Health 2:e540–e547. https://doi.org/10.1016/S2542-5196(18)30240-7

    Article  Google Scholar 

  • Azhar GS, Mavalankar D, Nori-Sarma A, Rajiva A, Dutta P, Jaiswal A, Sheffield P, Knowlton K, Hess JJ (2014) Heat-related mortality in India: excess all-cause mortality associated with the 2010 Ahmedabad heat wave. PLoS One 9:e91831. https://doi.org/10.1371/journal.pone.0091831

    Article  Google Scholar 

  • Barimalala R, Raholijao N, Pokam W, Reason CJC (2021) Potential impacts of 1.5 °C, 2 °C global warming levels on temperature and rainfall over Madagascar. Environ Res Lett 16:044019. https://doi.org/10.1088/1748-9326/abeb34

    Article  Google Scholar 

  • Batibeniz F, Ashfaq M, Diffenbaugh NS, Key K, Evans KJ, Turuncoglu UU, Önol B (2020) Doubling of U.S. Population exposure to climate extremes by 2050. Earth’s Future 8:e2019EF001421. https://doi.org/10.1029/2019EF001421

  • Chen H, Sun J (2019) Increased population exposure to extreme droughts in China due to 05 °C of additional warming. Environ Res Lett 14:064011. https://doi.org/10.1088/1748-9326/ab072e

    Article  Google Scholar 

  • Chen H, Sun J, Li H (2020) Increased population exposure to precipitation extremes under future warmer climates. Environ Res Lett 15:034048. https://doi.org/10.1088/1748-9326/ab751f

    Article  Google Scholar 

  • Choi G, Collins D, Ren G, Trewin B, Baldi M, Fukuda Y, Afzaal M, Pianmana T, Gomboluudev P, Huong PTT, Lias N, Kwon W-T, Boo K-O, Cha Y-M, Zhou Y (2009) Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. Int J Climatol 29:1906–1925. https://doi.org/10.1002/joc.1979

    Article  Google Scholar 

  • Chowdhury SI, Wardlaw IF (1978) The effect of temperature on kernel development in cereals. Aust J Agric Res 29:205–223. https://doi.org/10.1071/ar9780205

    Article  Google Scholar 

  • Dash SK, Mamgain A (2011) Changes in the frequency of different categories of temperature extremes in India. J Appl Meteorol Climatol 50:1842–1858. https://doi.org/10.1175/2011JAMC2687.1

    Article  Google Scholar 

  • Dashkhuu D, Kim JP, Chun JA, Lee WS (2015) Long-term trends in daily temperature extremes over Mongolia. Weather and Climate Extremes 8:26–33

    Article  Google Scholar 

  • Dimri AP, Dash SK (2012) Wintertime climatic trends in the western Himalayas. Clim Change 111:775–800. https://doi.org/10.1007/s10584-011-0201-y

    Article  Google Scholar 

  • Dosio A, Fischer EM (2018) Will Half a degree make a difference? Robust Projections of indices of mean and extreme climate in Europe under 1.5°C, 2°C, and 3°C global warming. Geophys Res Lett 45:935–944. https://doi.org/10.1002/2017GL076222

    Article  Google Scholar 

  • Fontes F, Gorst A, Palmer C (2021) Threshold effects of extreme weather events on cereal yields in India. Clim Change 165:26. https://doi.org/10.1007/s10584-021-03051-x

    Article  Google Scholar 

  • Ghosh S, Mujumdar PP (2009) Climate change impact assessment: uncertainty modeling with imprecise probability. Journal of Geophysical Research: Atmospheres 114. https://doi.org/10.1029/2008JD011648

  • Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging” (REA) Method. J Clim 15:1141–1158. https://doi.org/10.1175/1520-0442(2002)015%3c1141:COAURA%3e2.0.CO;2

    Article  Google Scholar 

  • Han Y, Ma Y, Wang Z, Xie Z, Sun G, Wang B, Ma W, Su R, Hu W, Fan Y (2021) Variation characteristics of temperature and precipitation on the northern slopes of the Himalaya region from 1979 to 2018. Atmos Res 253:105481. https://doi.org/10.1016/j.atmosres.2021.105481

    Article  Google Scholar 

  • Handmer, Honda,Yasushi, Kundzewicz, Zbigniew W, Arnell N, Benito G, Hatfield J, Mohamed IF, Peduzzi P, Wu S, Sherstyukov B, Takahashi K, Yan Z (2012) Changes in impacts of climate extremes: human systems and ecosystems — IPCC In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 231–290. https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/changes-in-impacts-of-climate-extremes-human-systems-and-ecosystems/. Accessed 10.10.21

  • Harrington LJ, Otto FEL (2018) Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5°C and 2°C of warming. Environ Res Lett 13:034011. https://doi.org/10.1088/1748-9326/aaaa99

    Article  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather and Climate Extremes, USDA Research and Programs on Extreme Events 10:4–10. https://doi.org/10.1016/j.wace.2015.08.001

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, Diedhiou A, Djalante R, Ebi K, Engelbrecht F, Zhou G, Joel G, Hijioka Y, Mehrotra S, Payne A, Seneviratne S, Thomas A, Warren R, Halim S, Guillén Bolaños T (2018) Chapter 3: Impacts of 1.5°C global warming on natural and human systems. In: Global Warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above preindustrial levels and related global greenhouse gas emission pathways [...]. pp. 175–311

  • Holaday AS, Martindale W, Alred R, Brooks AL, Leegood RC (1992) Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature. Plant Physiol 98:1105–1114

    Article  Google Scholar 

  • IPCC (2012) Summary for Policymakers Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change ed C B Field et al (Cambridge, UK: Cambridge University Press) pp 1–19

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY (1535pp).https://www.ipcc.ch/report/ar5/wg1/. Accessed 10.10.21

  • IPCC (2018) Global Warming of 1.5°C.An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press

  • Jacob D, Kotova L, Teichmann C, Sobolowski SP, Vautard R, Donnelly C, Koutroulis AG, Grillakis MG, Tsanis IK, Damm A, Sakalli A, van Vliet MTH (2018) Climate impacts in Europe under +1.5°C global warming. Earth’s Future 6:264–285. https://doi.org/10.1002/2017EF000710

    Article  Google Scholar 

  • Jain S, Salunke P, Mishra SK, Sahany S, Choudhary N (2019) Advantage of NEX-GDDP over CMIP5 and CORDEX data: Indian summer monsoon. Atmos Res 228:152–160. https://doi.org/10.1016/j.atmosres.2019.05.026

    Article  Google Scholar 

  • Jones B, Tebaldi C, O’Neill BC, Oleson K, Gao J (2018) Avoiding population exposure to heat-related extremes: demographic change vs climate change. Clim Change 146:423–437. https://doi.org/10.1007/s10584-017-2133-7

    Article  Google Scholar 

  • Joshi M, Hawkins E, Sutton R, Lowe J, Frame D (2011) Projections of when temperature change will exceed 2 °C above pre-industrial levels. Nature Clim Change 1:407–412. https://doi.org/10.1038/nclimate1261

    Article  Google Scholar 

  • Karmalkar, A.V., Bradley, R.S., 2017. Consequences of global warming of 1.5 °C and 2 °C for regional temperature and precipitation changes in the contiguous United States. PLOS ONE 12, e0168697. https://doi.org/10.1371/journal.pone.0168697

  • Kothawale DR, Rupa Kumar K (2005) On the recent changes in surface temperature trends over India. Geophys Res Lett 32. https://doi.org/10.1029/2005GL023528

  • Kovats S, Akhtar R (2008) Climate, climate change and human health in Asian cities. Environ Urban 20:165–175. https://doi.org/10.1177/0956247808089154

    Article  Google Scholar 

  • Kulkarni A, Bahuguna I, Rathore B, Singh S, Randhawa S, Sood R, Dhar S (2007) Glacial retreat in Himalayas using Indian Remote Sensing Satellite data. Curr Sci 92:69–74

    Google Scholar 

  • Kulkarni AV, Dhar S, Rathore BP, Raj K, B.G., Kalia, R., (2006) Recession of samudra tapu glacier, chandra river basin, Himachal Pradesh. J Indian Soc Remote Sens 34:39–46. https://doi.org/10.1007/BF02990745

    Article  Google Scholar 

  • Kumar N, Kumar Goyal M, Kumar Gupta A, Jha S, Das J, Madramootoo CA (2021) Joint behaviour of climate extremes across India: past and future. J Hydrol 597:126185. https://doi.org/10.1016/j.jhydrol.2021.126185

    Article  Google Scholar 

  • Kumar R, Mishra V (2020) Increase in population exposure due to dry and wet extremes in india under a warming climate. Earth’s Future 8:e2020EF001731. https://doi.org/10.1029/2020EF001731

  • Kumar R, Venuprasad R, Atlin GN (2007) Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: heritability and QTL effects. Field Crop Res 103:42–52. https://doi.org/10.1016/j.fcr.2007.04.013

    Article  Google Scholar 

  • Lewis SC, King AD, Perkins-Kirkpatrick SE, Mitchell DM (2019) Regional hotspots of temperature extremes under 1.5 °C and 2 °C of global mean warming. Weather and Climate Extremes 26:100233. https://doi.org/10.1016/j.wace.2019.100233

    Article  Google Scholar 

  • Li D, Zhou T, Zou L, Zhang W, Zhang L (2018a) Extreme High-temperature events over East Asia in 1.5°C and 2°C warmer futures: analysis of NCAR CESM low-warming experiments. Geophys Res Lett 45:1541–1550. https://doi.org/10.1002/2017GL076753

    Article  Google Scholar 

  • Li D, Zhou T, Zou L, Zhang W, Zhang L (2018b) Extreme high-temperature events over East Asia in 1.5° C and 2° C warmer futures: analysis of NCAR CESM low-warming experiments. Geophys Res Lett 45:1541–1550

    Article  Google Scholar 

  • Liu X, Yin Z-Y, Shao X, Qin N (2006) Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961–2003. Journal of Geophysical Research: Atmospheres 111. https://doi.org/10.1029/2005JD006915

  • Lobell DB, Sibley A, Ivan Ortiz-Monasterio J (2012) Extreme heat effects on wheat senescence in India. Nature Clim Change 2:186–189. https://doi.org/10.1038/nclimate1356

    Article  Google Scholar 

  • Mahmood R, Babel MS (2013) Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum basin, Pakistan and India. Theor Appl Climatol 113:27–44. https://doi.org/10.1007/s00704-012-0765-0

    Article  Google Scholar 

  • Maúre G, Pinto I, Ndebele-Murisa M, Muthige M, Lennard C, Nikulin G, Dosio A, Meque A (2018) The southern African climate under 1.5°C and 2°C of global warming as simulated by CORDEX regional climate models. Environ Res Lett 13:065002. https://doi.org/10.1088/1748-9326/aab190

    Article  Google Scholar 

  • Mayewski PA, Jeschke PA (1979) Himalayan and Trans-Himalayan Glacier fluctuations since AD 1812. Arct Alp Res 11:267–287. https://doi.org/10.2307/1550417

    Article  Google Scholar 

  • Mazdiyasni O, AghaKouchak A, Davis SJ, Madadgar S, Mehran A, Ragno E, Sadegh M, Sengupta A, Ghosh S, Dhanya CT, Niknejad M (2017) Increasing probability of mortality during Indian heat waves. Sci Adv 3:e1700066. https://doi.org/10.1126/sciadv.1700066

    Article  Google Scholar 

  • Mba WP, Longandjo G-NT, Moufouma-Okia W, Bell J-P, James R, Vondou DA, Haensler A, Fotso-Nguemo TC, Guenang GM, Tchotchou ALD, Kamsu-Tamo PH, Takong RR, Nikulin G, Lennard CJ, Dosio A (2018) Consequences of 15°C and 2°C global warming levels for temperature and precipitation changes over Central Africa. Environ Res Lett 13:055011. https://doi.org/10.1088/1748-9326/aab048

    Article  Google Scholar 

  • McMichael AJ, Wilkinson P, Kovats RS, Pattenden S, Hajat S, Armstrong B, Vajanapoom N, Niciu EM, Mahomed H, Kingkeow C, Kosnik M, O’Neill MS, Romieu I, Ramirez-Aguilar M, Barreto ML, Gouveia N, Nikiforov B (2008) International study of temperature, heat and urban mortality: the “ISOTHURM” project. Int J Epidemiol 37:1121–1131. https://doi.org/10.1093/ije/dyn086

    Article  Google Scholar 

  • Mishra V, Bhatia U, Tiwari AD (2020) Bias-corrected climate projections for South Asia from Coupled Model Intercomparison Project-6. Sci Data 7:338. https://doi.org/10.1038/s41597-020-00681-1

    Article  Google Scholar 

  • Mishra V, Mukherjee S, Kumar R, Stone DA (2017) Heat wave exposure in India in current, 1.5°C, and 2.0°C worlds. Environ Res Lett 12:124012. https://doi.org/10.1088/1748-9326/aa9388

    Article  Google Scholar 

  • Mukherjee S, Mishra V (2018) A sixfold rise in concurrent day and night-time heatwaves in India under 2 °C warming. Sci Rep 8:16922. https://doi.org/10.1038/s41598-018-35348-w

    Article  Google Scholar 

  • Murari KK, Ghosh S, Patwardhan A, Daly E, Salvi K (2015) Intensification of future severe heat waves in India and their effect on heat stress and mortality. Reg Environ Change 15:569–579. https://doi.org/10.1007/s10113-014-0660-6

    Article  Google Scholar 

  • Nanditha A, Thomson H, Susairaj P, Srivanichakorn W, Oliver N, Godsland IF, Majeed A, Darzi A, Satheesh K, Simon M, Raghavan A, Vinitha R, Snehalatha C, Westgate K, Brage S, Sharp SJ, Wareham NJ, Johnston DG, Ramachandran A (2020) A pragmatic and scalable strategy using mobile technology to promote sustained lifestyle changes to prevent type 2 diabetes in India and the UK: a randomised controlled trial. Diabetologia 63:486–496. https://doi.org/10.1007/s00125-019-05061-y

    Article  Google Scholar 

  • Nangombe S, Zhou T, Zhang W, Wu B, Hu S, Zou L, Li D (2018) Record-breaking climate extremes in Africa under stabilized 1.5 C and 2 C global warming scenarios. Nat Clim Chang 8(5):375–380

  • Nangombe SS, Zhou T, Zhang W, Zou L, Li D (2019) High-temperature extreme events over Africa under 1.5 and 2 °C of global warming. J Geophys Res: Atmos 124:4413–4428. https://doi.org/10.1029/2018JD029747

    Article  Google Scholar 

  • Nkemelang T, New M, Zaroug M (2018) Temperature and precipitation extremes under current, 15°C and 20°C global warming above pre-industrial levels over Botswana, and implications for climate change vulnerability. Environ Res Lett 13:065016. https://doi.org/10.1088/1748-9326/aac2f8

    Article  Google Scholar 

  • Osima S, Indasi VS, Zaroug M, Endris HS, Gudoshava M, Misiani HO, Nimusiima A, Anyah RO, Otieno G, Ogwang BA, Jain S (2018) Projected climate over the Greater Horn of Africa under 1.5 C and 2 C global warming. Environ Res Lett 13:065004

  • Pathak H, Aggarwal PK, Singh SD (2012) Climate change impact, adaptation and mitigation in agriculture: methodology for assessment and applications. Indian Agricultural Research Institute, New Delhi 302

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. PNAS 101:9971–9975. https://doi.org/10.1073/pnas.0403720101

    Article  Google Scholar 

  • Portmann RW, Solomon S, Hegerl GC (2009) Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc Natl Acad Sci 106:7324–7329

    Article  Google Scholar 

  • Pretis F, Schwarz M, Tang K, Haustein K, Allen MR (2018) Uncertain impacts on economic growth when stabilizing global temperatures at 1.5°C or 2°C warming. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376:20160460. https://doi.org/10.1098/rsta.2016.0460

    Article  Google Scholar 

  • Raj KBG (2011) Recession and reconstruction of Milam Glacier, Kumaon Himalaya, observed with satellite imagery. Curr Sci 100:1420–1425

    Google Scholar 

  • Ren Y-Y, Ren G-Y, Sun X-B, Shrestha AB, You Q-L, Zhan Y-J, Rajbhandari R, Zhang P-F, Wen K-M (2017) Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Adv Clim Chang Res 8:148–156. https://doi.org/10.1016/j.accre.2017.08.001

    Article  Google Scholar 

  • Rugenstein M, Bloch-Johnson J, Abe-Ouchi A, Andrews T, Beyerle U, Cao L, Chadha T, Danabasoglu G, Dufresne J-L, Duan L, Foujols M-A, Frölicher T, Geoffroy O, Gregory J, Knutti R, Li C, Marzocchi A, Mauritsen T, Menary M, Moyer E, Nazarenko L, Paynter D, Saint-Martin D, Schmidt GA, Yamamoto A, Yang S (2019) LongRunMIP: Motivation and design for a large collection of millennial-length AOGCM simulations. Bull Am Meteor Soc 100:2551–2570. https://doi.org/10.1175/BAMS-D-19-0068.1

    Article  Google Scholar 

  • Sanford T, Frumhoff PC, Luers A, Gulledge J (2014) The climate policy narrative for a dangerously warming world. Nat Clim Chang 4:164–166

    Article  Google Scholar 

  • Schleussner C-F, Lissner TK, Fischer EM, Wohland J, Perrette M, Golly A, Rogelj J, Childers K, Schewe J, Frieler K, Mengel M, Hare W, Schaeffer M (2016) Differential climate impacts for policy-relevant limits to global warming: the case of 1.5°C and 2°C. Earth System Dynamics 7:327–351. https://doi.org/10.5194/esd-7-327-2016

    Article  Google Scholar 

  • Shafiq MU, Rasool R, Ahmed P, Dimri AP (2019) Temperature and precipitation trends in Kashmir valley, North Western Himalayas. Theor Appl Climatol 135:293–304. https://doi.org/10.1007/s00704-018-2377-9

    Article  Google Scholar 

  • Sharma A, Goyal MK (2020) Assessment of the changes in precipitation and temperature in Teesta River basin in Indian Himalayan Region under climate change. Atmos Res 231:104670. https://doi.org/10.1016/j.atmosres.2019.104670

    Article  Google Scholar 

  • Sharma A, Sharma D, Panda SK, Dubey SK, Pradhan RK (2018) Investigation of temperature and its indices under climate change scenarios over different regions of Rajasthan state in India. Global Planet Change 161:82–96. https://doi.org/10.1016/j.gloplacha.2017.12.008

    Article  Google Scholar 

  • Shastri H, Paul S, Ghosh S, Karmakar S (2015) Impacts of urbanization on Indian summer monsoon rainfall extremes. Journal of Geophysical Research: Atmospheres 120:496–516. https://doi.org/10.1002/2014JD022061

    Article  Google Scholar 

  • Sheffield J, Goteti G, Wood EF (2006) Development of a 50-Year high-resolution global dataset of meteorological forcings for land surface modeling. J Clim 19:3088–3111. https://doi.org/10.1175/JCLI3790.1

    Article  Google Scholar 

  • Shekhar MS, Chand H, Kumar S, Srinivasan K, Ganju A (2010) Climate-change studies in the western Himalaya. Ann Glaciol 51:105–112. https://doi.org/10.3189/172756410791386508

    Article  Google Scholar 

  • Shen X, Liu B, Lu X, Fan G (2017) Spatial and temporal changes in daily temperature extremes in China during 1960–2011. Theoret Appl Climatol 130:933–943

    Article  Google Scholar 

  • Shen X, Liu B, Lu X (2018) Weak cooling of cold extremes versus continued warming of hot extremes in China during the recent global surface warming hiatus. Journal of Geophysical Research: Atmospheres 123:4073–4087

    Article  Google Scholar 

  • Shi C, Jiang Z-H, Zhu L-H, Zhang X, Yao Y-Y, Li L (2020) Risks of temperature extremes over China under 1.5 °C and 2 °C global warming. Advances in Climate Change Research, Including special topic on East Asian climate response to 1.5/2 °C global warming 11:172–184. https://doi.org/10.1016/j.accre.2020.09.006

  • Sonali P, Nagesh Kumar D (2013) Review of trend detection methods and their application to detect temperature changes in India. J Hydrol 476:212–227. https://doi.org/10.1016/j.jhydrol.2012.10.034

    Article  Google Scholar 

  • Suarez-Gutierrez L, Li C, Müller WA, Marotzke J (2018) Internal variability in European summer temperatures at 15°C and 2°C of global warming. Environ Res Lett 13:064026. https://doi.org/10.1088/1748-9326/aaba58

    Article  Google Scholar 

  • Suryavanshi S, Joshi N, Maurya HK, Gupta D, Sharma KK (2022) Understanding precipitation characteristics of Afghanistan at provincial scale. Theoret Appl Climatol 150(3):1775–1791

    Article  Google Scholar 

  • Sutton RT, Dong B, Gregory JM (2007) Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys Res Lett 34. https://doi.org/10.1029/2006GL028164

  • Tian D, Dong W, Zhang H, Guo Y, Yang S, Dai T (2017) Future changes in coverage of 1.5°C and 2°C warming thresholds. Sci Bull 62:1455–1463

    Article  Google Scholar 

  • UNFCCC (2015) Adoption of the Paris Agreement. Proposal by the President. | UNFCCC https://unfccc.int/documents/9064

  • van Oldenborgh GJ, Philip S, Kew S, van Weele M, Uhe P, Otto F, Singh R, Pai I, Cullen H, AchutaRao K (2018) Extreme heat in India and anthropogenic climate change. Nat Hazard 18:365–381. https://doi.org/10.5194/nhess-18-365-2018

    Article  Google Scholar 

  • Vinnarasi R, Dhanya CT (2016) Changing characteristics of extreme wet and dry spells of Indian monsoon rainfall. Journal of Geophysical Research: Atmospheres 121:2146–2160. https://doi.org/10.1002/2015JD024310

    Article  Google Scholar 

  • Vinnarasi R, Dhanya CT, Chakravorty A, AghaKouchak A (2017) Unravelling diurnal asymmetry of surface temperature in different climate zones. Sci Rep 7:7350. https://doi.org/10.1038/s41598-017-07627-5

    Article  Google Scholar 

  • Vogel E, Donat MG, Alexander LV, Meinshausen M, Ray DK, Karoly D, Meinshausen N, Frieler K (2019) The effects of climate extremes on global agricultural yields. Environ Res Lett 14:054010. https://doi.org/10.1088/1748-9326/ab154b

    Article  Google Scholar 

  • Wang Z, Lin L, Zhang X, Zhang H, Liu L, Xu Y (2017) Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming. Sci Rep 7:46432. https://doi.org/10.1038/srep46432

    Article  Google Scholar 

  • Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang Y, Wilkes A (2009) The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23:520–530. https://doi.org/10.1111/j.1523-1739.2009.01237.x

    Article  Google Scholar 

  • Yadav RR, Park, W-K, Singh J, Dubey B (2004) Do the western Himalayas defy global warming? Geophys Res Lett 31. https://doi.org/10.1029/2004GL020201

  • Yaduvanshi A, Zaroug M, Bendapudi R, New M (2019) Impacts of 1.5 °C and 2 °C global warming on regional rainfall and temperature change across India. Environ Res Commun 1:125002. https://doi.org/10.1088/2515-7620/ab4ee2

    Article  Google Scholar 

  • You Q, Wu F, Shen L, Pepin N, Jiang Z, Kang S (2020) Tibetan plateau amplification of climate extremes under global warming of 1.5 °C, 2 °C and 3 °C. Global and Planetary Change 192:103261. https://doi.org/10.1016/j.gloplacha.2020.103261

    Article  Google Scholar 

  • You Q, Zhang Y, Xie X, Wu F (2019) Robust elevation dependency warming over the Tibetan Plateau under global warming of 1.5 C and 2 C. Clim Dyn 53:2047–2060

    Article  Google Scholar 

  • Yu H, Wu D, Piao X, Zhang T, Yan Y, Tian Y, Li Q, Cui X (2020) Reduced impacts of heat extremes from limiting global warming to under 15 °C or 2 °C over Mediterranean regions. Environ Res Lett 16:014034. https://doi.org/10.1088/1748-9326/abd132

    Article  Google Scholar 

  • Yu R, Zhai P, Lu Y (2018) Implications of differential effects between 1.5 and 2 °C global warming on temperature and precipitation extremes in China’s urban agglomerations. Int J Climatol 38:2374–2385. https://doi.org/10.1002/joc.5340

    Article  Google Scholar 

  • Zhang W, Zhou T, Zou L, Zhang L, Chen X (2018) Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions. Nat Commun 9:3153. https://doi.org/10.1038/s41467-018-05633-3

    Article  Google Scholar 

  • Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wires Clim Change 2:851–870. https://doi.org/10.1002/wcc.147

Download references

Acknowledgements

We acknowledge the NCCS for the NEX-GDDP-CMIP5 datasets and also acknowledge the SEDAC for the high-resolution population datasets.

Author information

Authors and Affiliations

Authors

Contributions

Hardeep Kumar Maurya: data curation, investigation, writing.

Nitin Joshi: conceptualization, methodology, and editing.

Deepak Swami and Shakti Suryavanshi: conceptualization, methodology, and editing.

Corresponding author

Correspondence to Nitin Joshi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

This work is not published elsewhere.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3769 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, H.K., Joshi, N., Swami, D. et al. Change in Temperature Extremes over India Under 1.5 °C and 2 °C Global Warming Targets. Theor Appl Climatol 152, 57–73 (2023). https://doi.org/10.1007/s00704-023-04367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-023-04367-7

Navigation