Skip to main content
Log in

Applicability evaluation and error analysis of TMPA and IMERG in Inner Mongolia Autonomous Region, China

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Precipitation data accuracy is a critical element of global meteorological observations. The applicability of the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) and the latest Global Precipitation Measurement Program (GPM) Multi-Satellite Retrieval (IMERG) Precipitation Analysis Product (SBPP) was assessed using precipitation data from ground observations in Inner Mongolia Autonomous Region. The effects of precipitation intensity, season and topography on the accuracy of precipitation estimation were analyzed. At the daily scale, the SBPP could be used to estimate precipitation over a wide range of scales. The results showed that the TMPA daily precipitation product correlation (CC = 0.51) and precipitation capture (probability of detection (POD) = 0.545) were slightly less capable under the influence of complex topography and uneven precipitation, but IMERG (CC = 0.71; POD = 0.762) greatly improved the detection of precipitation, and the IMERG (mean RB = 9%) algorithm mitigated the TMPA (mean RB = 14%) overestimation. The correlation between TMPA (CC = 0.91) and IMERG (CC = 0.93) monthly products was significant. Overall, IMERG detected precipitation and monsoonal precipitation more accurately than TMPA in complex topographic landscapes and provided reliable precipitation estimates for future hydrometeorological studies in Inner Mongolia Autonomous Region. However, the high-intensity precipitation hit rate was low, and further error correction is required for extreme precipitation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The TMPA and IMERG data are obtained from https://disc.gsfc.nasa.gov/datasets/. The rain gauge data is from the China Meteorological Data Network (http://data.cma.cn).

References

  • Bogerd L, Overeem A, Leijnse H, Uijlenhoet R (2021) A comprehensive five-year evaluation of IMERG late run precipitation estimates over the Netherlands. J Hydrometeorol 22(7):1855–1868

    Google Scholar 

  • Chen F, Li X (2016) Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China. Remote Sensing 8(6):472

    Google Scholar 

  • Chen C, Chen Q, Duan Z, Zhang J, Mo K, Li Z et al (2018) Multiscale comparative evaluation of the GPM IMERG v5 and TRMM 3B42 v7 precipitation products from 2015 to 2017 over a climate transition area of China. Remote Sensing 10(6):944

    Google Scholar 

  • Derin Y, Yilmaz KK (2014) Evaluation of multiple satellite-based precipitation products over complex topography. J Hydrometeorol 15(4):1498–1516

    Google Scholar 

  • Duan L, Fan K, Li W, Liu T (2019) Spatial downscaling algorithm of TRMM precipitation based on multiple high-resolution satellite data for Inner Mongolia. China Theor Appl Climatol 135(1):45–59

    Google Scholar 

  • Ebert EE, Janowiak JE, Kidd C (2007) Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull Am Meteor Soc 88(1):47–64

    Google Scholar 

  • Gan F, Gao Y, Xiao L (2021) Comprehensive validation of the latest IMERG V06 precipitation estimates over a basin coupled with coastal locations, tropical climate and hill-karst combined landform. Atmos Res 249:105293

    Google Scholar 

  • Gao Y, Liu M (2013) Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol Earth Syst Sci 17(2):837–849

    Google Scholar 

  • Grody NC, Weng F (2008) Microwave emission and scattering from deserts: theory compared with satellite measurements. IEEE Trans Geosci Remote Sens 46(2):361–375

    Google Scholar 

  • Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier

    Google Scholar 

  • Hou AY, Kakar RK, Neeck S, Azarbarzin AA, Kummerow CD, Kojima M et al (2014) The global precipitation measurement mission. Bull Am Meteor Soc 95(5):701–722

    Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G et al (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55

    Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Tan J (2015c) Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. Nasa/gsfc Code 612(47):2019

    Google Scholar 

  • Huffman, G. J., Adler, R. F., Bolvin, D. T., & Nelkin, E. J. (2010). The TRMM multi-satellite precipitation analysis (TMPA). Satellite Rainfall Appl Surface Hydrol (pp. 3–22). Springer.

  • Huffman GJ, Bolvin DT, Braithwaite D, Hsu K, Joyce R, Xie P et al (2015a) NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theor Basis Docu (ATBD) Version, 4, 26

  • Huffman GJ, Bolvin DT, Braithwaite D, Hsu K, Joyce R, Xie P et al (2015b) NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theor Basis Docu (ATBD) Version, 4(26)

  • Huffman GJ, Bolvin DT, Braithwaite D, Hsu K-L, Joyce RJ, Kidd C et al (2020) Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG). Satellite Precipitation Measurement (pp. 343–353). Springer

  • Kim K, Park J, Baik J, Choi M (2017) Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos Res 187:95–105

    Google Scholar 

  • Kubota T, Ushio T, Shige S, Kida S, Kachi M, Okamoto KI (2009) Verification of high-resolution satellite-based rainfall estimates around Japan using a gauge-calibrated ground-radar dataset. J Meteorol Soc Japan Ser II 87:203–222

    Google Scholar 

  • Kummerow C, Barnes W, Kozu T, Shiue J, Simpson J (1998) The tropical rainfall measuring mission (TRMM) sensor package. J Atmos Oceanic Tech 15(3):809–817

    Google Scholar 

  • Kummerow C, Simpson J, Thiele O, Barnes W, Chang A, Stocker E et al (2000) The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J Appl Meteorol 39(12):1965–1982

    Google Scholar 

  • Kummerow CD, Randel DL, Kulie M, Wang N-Y, Ferraro R, Joseph Munchak S et al (2015) The evolution of the Goddard profiling algorithm to a fully parametric scheme. J Atmos Oceanic Tech 32(12):2265–2280

    Google Scholar 

  • Li Q, Wei J, Yin J, Qiao Z, Peng W, Peng H (2020) Multiscale comparative evaluation of the GPM and TRMM precipitation products against ground precipitation observations over Chinese Tibetan Plateau. IEEE J Selected Topics Appl Earth Observations Remote Sens 14:2295–2313

    Google Scholar 

  • Li P, Xu Z, Ye C, Ren M, Chen H, Wang J et al (2021) Assessment on IMERG V06 precipitation products using rain gauge data in Jinan City, Shandong Province. China Remote Sensing 13(7):1241

    Google Scholar 

  • Liu Z (2016) Comparison of integrated multisatellite retrievals for GPM (IMERG) and TRMM multisatellite precipitation analysis (TMPA) monthly precipitation products: initial results. J Hydrometeorol 17(3):777–790

    Google Scholar 

  • Lu D, Yong B (2018) Evaluation and hydrological utility of the latest GPM IMERG V5 and GSMaP V7 precipitation products over the Tibetan Plateau. Remote Sens 10(12):2022

    Google Scholar 

  • Ma Z, He K, Tan X, Xu J, Fang W, He Y et al (2018) Comparisons of spatially downscaling TMPA and IMERG over the Tibetan Plateau. Remote Sens 10(12):1883

    Google Scholar 

  • Ma Z, Xu J, Zhu S, Yang J, Tang G, Yang Y et al (2020) AIMERG: a new Asian precipitation dataset (01°/half-hourly, 2000–2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE. Earth Syst Sci Data 12(3):1525–1544

    Google Scholar 

  • Ma Q, Li Y, Feng H, Yu Q, Zou Y, Liu F et al (2021) Performance evaluation and correction of precipitation data using the 20-year IMERG and TMPA precipitation products in diverse subregions of China. Atmos Res 249:105304

    Google Scholar 

  • Maghsood FF, Hashemi H, Hosseini SH, Berndtsson R (2020) Ground validation of GPM IMERG precipitation products over Iran. Remote Sensing 12(1):48 (https://www.mdpi.com/2072-4292/12/1/48)

    Google Scholar 

  • Mahmoud MT, Hamouda MA, Mohamed MM (2019) Spatiotemporal evaluation of the GPM satellite precipitation products over the United Arab Emirates. Atmos Res 219:200–212

    Google Scholar 

  • Mandapaka PV, Lo EY (2020) Evaluation of GPM IMERG rainfall estimates in Singapore and assessing spatial sampling errors in ground reference. J Hydrometeorol 21(12):2963–2977

    Google Scholar 

  • Mantas VM, Liu Z, Caro C, Pereira A (2015) Validation of TRMM multi-satellite precipitation analysis (TMPA) products in the Peruvian Andes. Atmos Res 163:132–145

    Google Scholar 

  • Milewski A, Elkadiri R, Durham M (2015) Assessment and comparison of TMPA satellite precipitation products in varying climatic and topographic regimes in Morocco. Remote Sens 7(5):5697–5717

    Google Scholar 

  • Morsy M, Scholten T, Michaelides S, Borg E, Sherief Y, Dietrich P (2021) Comparative analysis of TMPA and IMERG precipitation datasets in the arid environment of El-Qaa plain. Sinai Remote Sens 13(4):588

    Google Scholar 

  • Nashwan MS, Shahid S, Wang X (2019) Assessment of satellite-based precipitation measurement products over the hot desert climate of Egypt. Remote Sens 11(5):555

    Google Scholar 

  • New M, Todd M, Hulme M, Jones P (2001) Precipitation measurements and trends in the twentieth century. Int J Climatol: J Royal Meteorol Soc 21(15):1889–1922

    Google Scholar 

  • Pipunic RC, Ryu D, Costelloe JF, Su CH (2015) An evaluation and regional error modeling methodology for near-real-time satellite rainfall data over Australia. J Geophys Res: Atmospheres 120(20):10767–10783

    Google Scholar 

  • Prakash S, Mitra AK, AghaKouchak A, Pai D (2015) Error characterization of TRMM multisatellite precipitation analysis (TMPA-3B42) products over India for different seasons. J Hydrol 529:1302–1312

    Google Scholar 

  • Prakash S, Mitra AK, Rajagopal E, Pai D (2016) Assessment of TRMM-based TMPA-3B42 and GSMaP precipitation products over India for the peak southwest monsoon season. Int J Climatol 36(4):1614–1631

    Google Scholar 

  • Rajulapati CR, Papalexiou SM, Clark MP, Pomeroy JW (2021) The perils of regridding: examples using a global precipitation dataset. J Appl Meteorol Climatol 60(11):1561–1573

    Google Scholar 

  • Randel DL, Kummerow CD, Ringerud S (2020) The Goddard Profiling (GPROF) precipitation retrieval algorithm. Satellite Precipitation Measure (pp. 141–152). Springer

  • Retalis A, Katsanos D, Tymvios F, Michaelides S (2018) Validation of the first years of GPM operation over Cyprus. Remote Sens 10(10):1520

    Google Scholar 

  • Retalis A, Katsanos D, Tymvios F, Michaelides S (2020) Comparison of GPM IMERG and TRMM 3B43 products over Cyprus. Remote Sens 12(19):3212

    Google Scholar 

  • Sahoo AK, Sheffield J, Pan M, Wood EF (2015) Evaluation of the tropical rainfall measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large-scale meteorological drought. Remote Sens Environ 159:181–193

    Google Scholar 

  • Saouabe T, El Khalki EM, Saidi MEM, Najmi A, Hadri A, Rachidi S et al (2020) Evaluation of the GPM-IMERG precipitation product for flood modeling in a semi-arid mountainous basin in Morocco. Water 12(9):2516

    Google Scholar 

  • Sharifi E, Steinacker R, Saghafian B (2016) Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: preliminary results. Remote Sens 8(2):135

    Google Scholar 

  • Sharma S, Khadka N, Hamal K, Shrestha D, Talchabhadel R, Chen Y (2020) How accurately can satellite products (TMPA and IMERG) detect precipitation patterns, extremities, and drought across the Nepalese Himalaya? Earth Space Sci 7(8):e2020EA001315

    Google Scholar 

  • Shen J., Li X (2008) 'China Meteorological Disasters Ceremony ( Inner Mongolia Volume )' Meteorological Press. Beijing, p. 5

  • Shige S, Kummerow CD (2016) Precipitation-top heights of heavy orographic rainfall in the Asian monsoon region. J Atmos Sci 73(8):3009–3024

    Google Scholar 

  • Singer MB, Asfaw DT, Rosolem R, Cuthbert MO, Miralles DG, MacLeod D et al (2021) Hourly potential evapotranspiration at 0.1° resolution for the global land surface from 1981-present. Scientific Data 8(1):1–13

    Google Scholar 

  • Tan J, Huffman GJ, Bolvin DT, Nelkin EJ (2019) IMERG V06: changes to the morphing algorithm. J Atmos Oceanic Tech 36(12):2471–2482

    Google Scholar 

  • Tang Y, Gan J, Zhao L, Gao K (2006) On the climatology of persistent heavy rainfall events in China. Adv Atmos Sci 23(5):678–692

    Google Scholar 

  • Tang G, Clark MP, Papalexiou SM, Ma Z, Hong Y (2020) Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sens Environ 240:111697

    Google Scholar 

  • Tian Y, Peters‐Lidard CD, Eylander JB, Joyce RJ, Huffman GJ, Adler RF et al (2009) Component analysis of errors in satellite‐based precipitation estimates. J Geophys Res: Atmospheres 114(D24)

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteor Soc 84(9):1205–1218

    Google Scholar 

  • Vernimmen R, Hooijer A, Aldrian E, Van Dijk A (2012) Evaluation and bias correction of satellite rainfall data for drought monitoring in Indonesia. Hydrol Earth Syst Sci 16(1):133–146

    Google Scholar 

  • Wang Z, Zhong R, Lai C, Chen J (2017) Evaluation of the GPM IMERG satellite-based precipitation products and the hydrological utility. Atmos Res 196:151–163

    Google Scholar 

  • Wang D, Wang X, Liu L, Wang D, Huang H, Pan C (2019) Evaluation of TMPA 3B42V7, GPM IMERG and CMPA precipitation estimates in Guangdong Province. China Int J Climatol 39(2):738–755

    Google Scholar 

  • Wang J, Petersen WA, Wolff DB (2021) Validation of satellite-based precipitation products from TRMM to GPM. Remote Sens 13(9):1745

    Google Scholar 

  • Wang H., Zhang X (2019). Analysis and evalution of IMERG and TMPA satellite precipitation products in the three gorges region basin. IAHR World Congress.

  • Wehbe Y, Temimi M, Adler RF (2020) Enhancing precipitation estimates through the fusion of weather radar, satellite retrievals, and surface parameters. Remote Sens 12(8):1342

    Google Scholar 

  • Wei L, Jiang S, Ren L, Wang M, Zhang L, Liu Y et al (2021) Evaluation of seventeen satellite-, reanalysis-, and gauge-based precipitation products for drought monitoring across mainland China. Atmos Res 263:105813

    Google Scholar 

  • Wu L, Xu Y, Wang S (2018) Comparison of TMPA-3B42RT legacy product and the equivalent IMERG products over mainland China. Remote Sens 10(11):1778

    Google Scholar 

  • Xu F, Guo B, Ye B, Ye Q, Chen H, Ju X et al (2019) Systematical evaluation of GPM IMERG and TRMM 3B42V7 precipitation products in the Huang-Huai-Hai Plain. China Remote Sens 11(6):697

    Google Scholar 

  • Yong B, Liu D, Gourley JJ, Tian Y, Huffman GJ, Ren L et al (2015) Global view of real-time TRMM multisatellite precipitation analysis: implications for its successor global precipitation measurement mission. Bull Am Meteor Soc 96(2):283–296

    Google Scholar 

  • Yuan S, Zhu L, Quiring SM (2021) Comparison of two multisatellite algorithms for estimation of tropical cyclone precipitation in the United States and Mexico: TMPA and IMERG. J Hydrometeorol 22(4):923–939

    Google Scholar 

  • Yuanhe Y, Jinliang W (2020) Applicability evaluation of TRMM 3B43 precipitation data for downscaling in Yunnan Province. Chin J Agrometeorol 41(09):575

    Google Scholar 

  • Zhao T, Yatagai A (2014) Evaluation of TRMM 3B42 product using a new gauge-based analysis of daily precipitation over China. Int J Climatol 34(8):2749–2762

    Google Scholar 

Download references

Acknowledgements

In this section, the authors appreciate the China Meteorological Data Service Center and NASA for providing rain gauge data and satellite precipitation product, respectively.

Funding

This work was supported by the National Key Research and Development Program of China (Grant No. 2021YFC3201203), National Natural Science Foundation of China (Grant No. 51869014), Major Science and Technology Projects of Inner Mongolia Autonomous Region (Grant Nos. 2020ZD0009 and ZDZX2018054), and Open Project Program of the Ministry of Education Key Laboratory of Ecology and Resources Use of the Mongolian Plateau (Grant No. KF2020006). We thank our colleagues at the Inner Mongolia Key Laboratory of River and Lake Ecology for their help.

Author information

Authors and Affiliations

Authors

Contributions

Ruihong Yu designed this study. Zheng Ge, Penghang Zhu, and Yuan Li performed the data analysis and visualization. Zhuangzhuang Zhang, Xinyu Liu, and Xiaohui Ren provided guidance during investigation of the research work. All authors discussed the results. Zheng Ge wrote the initial draft. Ruihong Yu, and Yanling Hao reviewed and corrected the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Ruihong Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not required.

Consent to participate

Not required as the research does not involve any human subjects.

Consent for publication

The authors grant the publisher the sole and exclusive license of the full copyright in the contribution.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47385 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Z., Yu, R., Zhu, P. et al. Applicability evaluation and error analysis of TMPA and IMERG in Inner Mongolia Autonomous Region, China. Theor Appl Climatol 151, 1449–1467 (2023). https://doi.org/10.1007/s00704-022-04325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-022-04325-9

Navigation