Skip to main content

Long-term soil temperature dynamics of the Kunlun Pass permafrost region on the Qinghai-Tibetan Plateau

Abstract

The thermal dynamics was important for permafrost change processes under climate change. However, little studies were focused on the soil thermal dynamics with long-term observed data in the permafrost region on the Qinghai-Tibetan Plateau (QTP). From 2005 to 2017, we have monitored thermal dynamic of active layer overlying permafrost in the Kunlun Pass (CN06 site) region of the QTP. Results demonstrated that the number of thaw days is lower than the number of freeze days, and the start dates of thawing and freezing were delayed over this period. Moreover, air and soil temperature were all fastest warming in summer at different depths, then in autumn, except in spring and winter which has a cooling trend at some depths. Accordingly, the mean annual soil temperatures exhibited an evident warming trend at different depths. In addition, thawing degree-days (TDD) for air and soil temperature (at 10 cm) showed an increasing trend, whereas the respective freezing degree-days (FDD) had a decreasing trend. The mean freezing and thawing n factor were 1.43 and 0.50 from 2005 to 2017, and the surface offset of the study site ranged from 2.65 to 3.42 °C, which was lower than those in the subarctic and Arctic regions. Meanwhile, there was a linear relationship between the TDDs and active layer thickness, and a power function relationship between the TDDa and active layer thickness. The active layer thickness exhibited a significant increase with the rate of 2.4 cm/year from 2005 to 2017. These results can be used to understand the thermal dynamics response to climate change and indicate related changes and differences in permafrost in different permafrost regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code availability

Not applicable.

References

  • Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletskiy DA, Schoeneich P, Romanovsky VE, Lewkowicz AG, Abramov A (2019) Permafrost is warming at a global scale. Nat Commun 10:264

    Article  Google Scholar 

  • Burn CR, Kokelj SV (2009) The environment and permafrost of the mackenzie delta area. Permafrost Periglac Process 20(2):83–105

    Article  Google Scholar 

  • Chen H, Sun Z (2005) Simulation of land-atmosphere exchange processes at Amdo and Gaize stations over Qinghai-Xizang Plateau. Plateau Meteorology 24(1):9–15

    Google Scholar 

  • Cheng G, Zhao L, Li R, Wu X, Sheng Y, Hu G, Zou D, Jin H, Li X, Wu Q (2019) Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chin Sci Bull 64(27):2783–2795

    Article  Google Scholar 

  • Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res-Earth Surf 112(F2):F02S03.

  • Ding Y, Mu C, Wu T, Hu G, Zou D, Wang D, Li W, Wu X (2021) Increasing cryospheric hazards in a warming climate. Earth-Sci Rev 213:103500

    Article  Google Scholar 

  • Duan A, Xiao Z (2015) Does the climate warming hiatus exist over the Tibetan Plateau? Sci Rep 5

  • Fang X, Luo S, Lyu S (2018) Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960–2014. Theor Appl Climatol 1–13

  • Frauenfeld OW, Zhang T, Barry RG, Gilichinsky D (2004) Interdecadal changes in seasonal freeze and thaw depths in Russia. J Geophys Res 109(D5):413–421

    Google Scholar 

  • Frauenfeld OW, Zhang T, McCreight JL (2007) Northern hemisphere freezing/thawing index variations over the twentieth century. Int J Climatol 27(1):47–63

    Article  Google Scholar 

  • Fu Y, Ma Y, Zhong L, Yang Y, Guo X, Wang C, Xu X, Yang K, Xu X, Liu L, Fan G, Li Y, Wang D (2020) Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: a review and perspective. Natl Sci Rev 7(3):500–515

    Article  Google Scholar 

  • Hansson K, Simunek J, Mizoguchi M, Lundin LC, van Genuchten MT (2004) Water flow and heat transport in frozen soil: Numerical solution and freeze-thaw applications. Vadose Zone J 3(2):693–704

    Google Scholar 

  • Harlan RL (1973) Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour Res 9(5):1314–1323

    Article  Google Scholar 

  • Harris RB (2010) Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. J Arid Environ 74(1):1–12

    Article  Google Scholar 

  • Hu G, Zhao L, Wu X, Li R, Wu T, Xie C, Pang Q, Xiao Y, Li W, Qiao Y (2015) Modeling permafrost properties in the Qinghai-Xizang (Tibet) Plateau. Sci China Earth Sci 58(12):2309–2326

    Article  Google Scholar 

  • Hu G, Zhao L, Wu X, Li R, Wu T, Xie C, Qiao Y, Shi J, Li W, Cheng G (2016) New Fourier-series-based analytical solution to the conduction-convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux. Int J Heat Mass Transf 95:815–823

    Article  Google Scholar 

  • Hu G, Zhao L, Li R, Wu X, Wu T, Xie C, Zhu X, Su Y (2019b) Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma 337:893–905

    Article  Google Scholar 

  • Hu G, Zhao L, Zhu X, Wu X, Wu T, Li R, Xie C, Hao J (2020) Review of algorithms and parameterizations to determine unfrozen water content in frozen soil. Geoderma 368:114277

    Article  Google Scholar 

  • Hu G, Zhao L, Li R, Wu X, Wu T, Xie C, Zhu X, Hao J (2019a) Thermal properties of active layer in permafrost regions with different vegetation types on the Qinghai-Tibetan Plateau. Theor Appl Climatol (139):983–993

  • IPCC (2019) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge

  • Jiang H, Zhang W, Yi Y, Yan K, Li G, Wang G (2018) The impacts of soil freeze/thaw dynamics on soil water transfer and spring phenology in the Tibetan Plateau. Arctic Antarct Alp Res 50(1)

  • Jiang H, Wang K (2000) Analysis of the surface temperature over Qinghai-Xizang Plateau from satellite. Plateau Meteorol 19(3):323–323

    Google Scholar 

  • Jin H, Wu Q, RomanovskyVE (2021) Degrading permafrost and its impacts. Advances in Climate Change Research, pp. 1–5

  • Knoblauch C, Beer C, Sosnin A, Wagner D, Pfeiffer E-M (2013) Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob Change Biol 19(4):1160–1172

    Article  Google Scholar 

  • Li S, Wu T (2005) The relationship between air temperature and ground temperature in the Tibetan Plateau. J Glaciol Geocryol 27(5):627–632

    Google Scholar 

  • Li J, Hong Z, Sun S (2000) An Observational Experiment on the Atmospheric Boundary Layer in Gerze Area of the Tibetan Plateau. Chin J Atmos Sci 24(3):301–301

    Google Scholar 

  • Li R, Zhao L, Ding YJ, Tonghua Wu, Xiao Y, Du E (2012) Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Sci Bull 57(35):4609–4616

    Article  Google Scholar 

  • Lin Z, Burn C, Niu F, Luo J, Liu M, Yin G (2015) The thermal regime, including a reversed thermal offset, of arid permafrost sites with variations in vegetation cover density, Wudaoliang Basin, Qinghai-Tibet Plateau. Permafr Periglac Process 26(2):142–159

    Article  Google Scholar 

  • Liu X, Cheng Z, Yan L, Yin Z-Y (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global Planet Change 68(3):164–174

    Article  Google Scholar 

  • Luo D, Jin H, Marchenko SS, Romanovsky VE (2018) Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau. Geoderma 312:74–85

    Article  Google Scholar 

  • Ma L, Zhang T, Li Q, Frauenfeld OW, Qin D (2008) Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China. J Geophys Res-Atmos 113(D15)

  • Muller SW (1947) Permafrost or permanently frozen ground and related engineering problems

  • Nitzbon J, Westermann S, Langer M, Martin LCP, Strauss J, Laboor S, Boike J (2020) Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat Commun 11(1):2201–2201

    Article  Google Scholar 

  • Niu F, Lin Z, Liu H, Lu J (2011) Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau. Geomorphology 132(3–4):222–233

    Article  Google Scholar 

  • Pan X, Li Y, Yu Q, Shi X, Yang D, Roth K (2016) Effects of stratified active layers on high-altitude permafrost warming: a case study on the Qinghai-Tibet Plateau. Cryosphere 10(4):1591–1603

    Article  Google Scholar 

  • Qin Y, Liu W, Guo Z, Xue S (2020) Spatial and temporal variations in soil temperatures over the Qinghai-Tibet Plateau from 1980 to 2017 based on reanalysis products. Theoret Appl Climatol 140(3–4):1055–1069

    Article  Google Scholar 

  • Qiu J (2008) The third pole. Nature 454(7203):393–396

    Article  Google Scholar 

  • Romanovsky V, Osterkamp T (1995) Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska. Permafrost Periglac Process 6(4):313–335

    Article  Google Scholar 

  • Schuur EAG, McGuire AD, Schaedel C, Grosse G, Harden JW, Hayes DJ, Hugelius G, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schaefer K, Turetsky MR, Treat CC, Vonk JE (2015) Climate change and the permafrost carbon feedback. Nature 520(7546):171–179

    Article  Google Scholar 

  • Shang W, Zhao L, Wu X, Li Y, Yue G, Zhao Y, Qiao Y (2015) Soil organic matter fractions under different vegetation types in permafrost regions along the Qinghai-Tibet Highway, north of Kunlun Mountains, China. J Mt Sci 12(4):1010–1024

    Article  Google Scholar 

  • Smith M, Riseborough D (2002) Climate and the limits of permafrost: a zonal analysis. Permafrost Periglac Process 13(1):1–15

    Article  Google Scholar 

  • Stendel M, Christensen JH (2002) Impact of global warming on permafrost conditions in a coupled GCM. Geophysical Research Letters 29(13)

  • Streletskiy DA, Sherstiukov AB, Frauenfeld OW, Nelson FE (2015) Changes in the 1963–2013 shallow ground thermal regime in Russian permafrost regions. Environ Res Lett 10(12)

  • Tawfik AB, Steiner AL (2011) The role of soil ice in land-atmosphere coupling over the United States: a soil moisture-precipitation winter feedback mechanism. J Geophys Res-Atmos 116:D02113

    Article  Google Scholar 

  • Wang J (1999) Land surface process experiments and interaction study in China—From Heife to imgrass and Game-Tibet/Tipex. Plateau Meteorol 18(3):280–280

    Google Scholar 

  • Wang G, Li Y, Wu Q, Wang Y (2006) Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Sci China Ser D-Earth Sci 49(11):1156–1169

    Article  Google Scholar 

  • Wang K, Jafarov E, Overeem I, Romanovsky V, Schaefer K, Clow G, Urban F, Cable W, Piper M, Schwalm C, Zhang T, Kholodov A, Sousanes P, Loso M, Hill K (2018a) A synthesis dataset of permafrost-affected soil thermal conditions for Alaska, USA. Earth Syst Sci Data 10(4):2311–2328

    Article  Google Scholar 

  • Wang S, Wang Q, Qi J, Liu F (2018b) Experimental study on freezing point of saline soft clay after freeze-thaw cycling. Geomech Eng 15(4):997–1004

    Google Scholar 

  • Wang C, Yang K, Zhang F (2020a) Impacts of soil freeze-thaw process and snow melting over Tibetan Plateau on Asian summer monsoon system: a review and perspective. Front Earth Sci 8

  • Wang Q, Qi J, Wang S, Xu J, Yang Y (2020b) Effect of freeze-thaw on freezing point of a saline loess. Cold Reg Sci Technol 170:102922

    Article  Google Scholar 

  • Wei Z, Jin HJ, Zhang JM, Yu SP, Han XJ, Ji YJ, He RX, Cheng XL (2011) Prediction of permafrost changes in Northeastern China under a changing climate. Sci China (Earth Sci) (06):924–935

  • Wu Q, Zhang T (2010) Changes in active layer thickness over the Qinghai-Tibetan Plateau from1995 to 2007. J Geophys Res Atmos 115(D9):D09107

    Article  Google Scholar 

  • Wu JC, Sheng Y, Wu QB, Wen Z (2010a) Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau. Sci China (Ser D: Earth Sci) (01):150–158

  • Wu Q, Zhang T, Liu Y (2010b) Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Global Planet Change 72(1–2):32–38

    Article  Google Scholar 

  • Wu Q, Zhang T, Liu Y (2012) Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010. Cryosphere 6(3):607–612

    Article  Google Scholar 

  • Wu T, Zhao L, Li R, Wang Q, Xie C, Pang Q (2013) Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. Int J Climatol 33(4):920–930

    Article  Google Scholar 

  • Wu Q, Hou Y, Yun H, Liu Y (2015) Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China. Global Planet Change 124:149–155

    Article  Google Scholar 

  • Wu T, Qin Y, Wu X, Li R, Zou D, Xie C (2018) Spatiotemporal changes of freezing/thawing indices and their response to recent climate change on the Qinghai-Tibet Plateau from 1980 to 2013. Theoret Appl Climatol 132(3–4):1187–1199

    Article  Google Scholar 

  • Yang K, Wang C (2019) Seasonal persistence of soil moisture anomalies related to freeze-thaw over the Tibetan Plateau and prediction signal of summer precipitation in eastern China. Clim Dyn 53(3–4):2411–2424

    Article  Google Scholar 

  • Yang K, Chen YY, Qin J (2009) Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol Earth Syst Sci 13(5):687–701

    Article  Google Scholar 

  • Yang S, Wu T, Li R, Zhu X, Wang W, Yu W, Qin Y, Hao J (2018) Spatial-temporal changes of the near-surface soil freeze-thaw status over the Qinghai-Tibetan Plateau. Plateau Meteorology 37(1):43–53

    Google Scholar 

  • Yao T, Xue Y, Chen D, Chen F, Thompson L, Cui P, Koike T, Lau WKM, Lettenmaier D, Mosbrugger V, Zhang R, Xu B, Dozier J, Gillespie T, Gu Y, Kang S, Piao S, Sugimoto S, Ueno K, Wang L, Wang W, Zhang F, Sheng Y, Guo W, Ailikun, Yang X, Ma Y, Shen SSP, Su Z, Chen F, Liang S, Liu Y, Singh VP, Yang K, Yang D, Zhao X, Qian Y, Zhang Y, Li Q (2019) Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis. Bull Am Meteorol Soc 100(3):423–444

    Article  Google Scholar 

  • Ye D, Gao Y (1979) The meteorology of the Qinghai-Xizang (Tibet) Plateau, Science Press: Beijing, 278 pp

  • Yuan L, Zhao L, Li R, Hu G, Du E, Qiao Y, Ma L (2020) Spatiotemporal characteristics of hydrothermal processes of the active layer on the central and northern Qinghai-Tibet plateau. Sci Total Environ 712:136392–136392

    Article  Google Scholar 

  • Yue G, Zhao L, Wang Z, Zou D, Zhang L, Qiao Y, Zhao Y, Niu L (2015) Relationship between alpine meadow root distribution and active layer temperature variation in permafrost areas. J Glaciol Geocryol 37(5):1381–1387

    Google Scholar 

  • Zhao L, Ping C-L, Yang D, Cheng G, Ding Y, Liu S (2004) Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China. Glob Planet Change 43(1):19–31

    Article  Google Scholar 

  • Zhao L, Wu Q, Marchenko S, Sharkhuu N (2010) Thermal state of permafrost and active layer in Central Asia during the International Polar Year. Permafr Periglac Process 21(2):198–207

    Article  Google Scholar 

  • Zhao L, Zou D, Hu G, Du E, Pang Q, Xiao Y, Li R, Sheng Y, Wu X, Sun Z, Wang L, Wang C, Ma L, Zhou H, Liu S (2020) Changing climate and the permafrost environment on the Qinghai-Tibet (Xizang) plateau. Permafrost Periglac Process 31(3):396–405

    Article  Google Scholar 

  • Zhao L, Zou D, Hu G, Wu T, Du E, Liu G, Xiao Y, Li R, Pang Q, Qiao Y, Wu X, Sun Z, Xing Z, Sheng Y, Zhao Y, Shi J, Xie C, Wang L, Wang C, Cheng G (2021) A synthesis dataset of permafrost thermal state for the Qinghai-Xizang (Tibet) Plateau, China. Earth Syst Sci Data 13:4207–4218

    Article  Google Scholar 

  • Zhu F, Cuo L, Zhang Y, Luo J-J, Lettenmaier DP, Lin Y, Liu Z (2017) Spatiotemporal variations of annual shallow soil temperature on the Tibetan Plateau during 1983–2013. Clim Dyn 51(5–6):2209–2227

    Google Scholar 

  • Zou D, Zhao L, Sheng Y, Chen J, Hu G, Wu T, Wu J, Xie C, Wu X, Pang Q, Wang W, Du E, Li W, Liu G, Li J, Qin Y, Qiao Y, Wang Z, Shi J, Cheng G (2017) A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11(6):2527–2542

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Joint Research Project of Three-River Headwaters National Park, Chinese Academy of Sciences, and The People’s Government of Qinghai Province (LHZX-2020–11-1), and the National Natural Science Foundation of China (42071094, 41931180, 41801060), and the West Light Foundation of the Chinese Academy of Sciences, Youth Innovation Promotion Association of the Chinese Academy of Sciences (2022430), and the Natural Science Foundation of Gansu Province (20JR10RA028).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by Guojie Hu, Lin Zhao, and Tonghua Wu. The first draft of the manuscript was written by Guojie Hu. All authors read and approved the final.

Corresponding author

Correspondence to Guojie Hu.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Zhao, L., Wu, T. et al. Long-term soil temperature dynamics of the Kunlun Pass permafrost region on the Qinghai-Tibetan Plateau. Theor Appl Climatol (2022). https://doi.org/10.1007/s00704-022-04083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00704-022-04083-8