Skip to main content

Advertisement

Log in

Mapping the impact of recent climate change on viticultural potential in Romania

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Climate change affects the viticulture sector worldwide in different ways, some countries reporting negative impacts, other positive effects, depending on the type of climate in which they are located. Romania is an important wine-producing European country, with a long viticultural tradition. Our study aims to map the ecological potential for viticulture at country scale, using a GIS-based multi-criteria methodology, which quantifies and integrates the influences of climate, soil and relief factors. The soil and relief factors are considered stable in the analysed time period, while the climate factors are dynamic, their influence being assessed for two periods of time: the reference climate period (1961–1990) and the more recent period (1991–2013), affected by climate warming. The results show that the area suitable for viticulture has expanded during the last decades, new regions in the plateau, hilly and lower mountain areas shifting from restrictive to suitable for wine grape cultivation (25,245 km2, 10.6% of the country). On average, the upper limit vine growing has shifted from 612 m (1961–1990) to 860 m (1991–2013). As a consequence, the potential for white wines has migrated to higher elevations and latitudes, while the potential for red wine production has significantly increased at lower elevations. Overall, there is an increase in suitability for wine grape production for about one third of the country (76,833 km2, 32.2%). Such changes are likely to modify the typicity of traditional winemaking regions, compelling the producers to adapt through introducing of new grape varieties and technological changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author (Patriche C.V.), upon reasonable request.

Code availability

Not applicable.

Notes

  1. Soil names according to WRB (FAO, 2015).

References

  • Anderson JD, Jones GV, Tait A, Hall A, Trought MCT (2012) Analysis of viticulture region climate structure and suitability in New Zealand. J Int Sci Vigne Vin. 46(3):149–165. https://doi.org/10.20870/oeno-one.2012.46.3.1515

  • Bucur GM, Dejeu L (2016) Climate change trends in some Romanian viticultural centers. AgroLife Sci J 5(2):24–27

    Google Scholar 

  • Cardell MF, Amengual A, Romero R (2019) Future effects of climate change on the suitability of wine grape production across Europe. Reg Environ Change 19:2299–2310. https://doi.org/10.1007/s10113-019-01502-x

    Article  Google Scholar 

  • Carey VA Saayman D, Archer E, Barbeau G, Wallace M (2008) Viticultural terroirs in Stellenbosch, South Africa. I. The identification of natural terroir units. J Int Sci Vigne Vin 42(4):169–183. https://doi.org/10.20870/oeno-one.2008.42.4.809

  • Chen D, Ou T, Gong L, Xu CY, Li W, Ho CH, Qian W (2010) Spatial interpolation of daily precipitation in China: 1951–2005. Adv Atmos Sci 27:1221–1232. https://doi.org/10.1007/s00376-010-9151-y

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V et al (2007) Regional Climate Projections. In: Solomon SD, Qin M, Manning Z, Chen M, Marquis KB., Averyt M.T., Miller H.L. (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press: Cambridge, UK; New York, NY, USA, pp 847–940

  • Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J (2015) System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991–2007. https://doi.org/10.5194/gmd-8-1991-2015

    Article  Google Scholar 

  • Constantinescu G (1967) Méthodes et principes de détermination des aptitudes viticoles d’une région et du choix des cépages. Bull OIV 40(440–441):1179–1205

    Google Scholar 

  • Croitoru AE, Piticar A (2013) Changes in daily extreme temperatures in the extra-Carpathians regions of Romania. Int J Climatol 33(8):1987–2001. https://doi.org/10.1002/joc.3567

    Article  Google Scholar 

  • Dobesch H, Dumolard P, Dyras I (eds) (2007) The Use of GIS in Climatology and Meteorology. ISTE-Wiley, London

  • Duchêne E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25:93–99. https://doi.org/10.1051/agro:2004057

    Article  Google Scholar 

  • Dumitrescu A, Bîrsan MV (2015) ROCADA: a gridded daily climatic dataset over Romania (1961–2013) for nine meteorological variables. Nat Hazards 78(2):1045–1063. https://doi.org/10.1007/s11069-015-1757-z

    Article  Google Scholar 

  • Dumitrescu A, Bojariu R, Bîrsan MV, Marin L, Mane A (2015) Recent climatic changes in Romania from observational data (1961–2013). Theor Appl Climatol 122:111–119. https://doi.org/10.1007/s00704-014-1290-0

    Article  Google Scholar 

  • Eitzinger J, Kubu G, Formayer H, Gerersdorfer T (2009) Climatic wine growing potential under future climate scenarios in Austria. In: Pribullová A, Bičárová S (eds) Sustainable Development and Bioclimate, Reviewed Conference Proceedings, Stará Lesná, pp 146–147

  • Entekhabi D (1997) Land surface processes: basic tools and concepts. In: Marani M, Rigon R, (eds) Hydrometeorology and Climatology, Environmental Dynamics Series, V, Venice, pp 3–46

  • European Environment Agency (EEA) (2018) Corine Land Cover (CLC). https://land.copernicus.eu/pan-european/corine-land-cover/clc2018. Accessed 25 Feb 2022

  • European Environment Agency (EEA). European Digital Elevation Model (EU-DEM), version 1.1. http://land.copernicus.eu/pan-european/satellite-derived-products/eu-dem/eu-dem-v1.1/view. Accessed 25 Feb 2022

  • Florea N, Bălăceanu V, Munteanu I, Asvadurov H, Conea A, Oancea C et al (Eds) (1963–1993) Harta Solurilor României, scara 1:200,000 (Soil Map of Romania, scale 1:200,000). Geological Institute/IGFCOT, Bucharest, 50 sheets

  • Food and Agriculture Organization (FAO) (2015) World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Reports 106, Rome

  • Fraga H (2019) Viticulture and Winemaking under Climate Change. Agronomy 9(12):783. https://doi.org/10.3390/agronomy9120783

    Article  Google Scholar 

  • Fraga H, Santos JA, Moutinho-Pereira J, Carlos C, Silvestre J, Eiras-Días J, Mota T, Malheiro AC (2016a) Statistical modelling of grapevine phenology in Portuguese wine regions: observed trends and climate change projections. J Agric Sci 154(5):795–811. https://doi.org/10.1017/S0021859615000933

    Article  Google Scholar 

  • Fraga H, de Cortázar G, Atauri I, Malheiro AC, Santos JA (2016b) Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob Chang Biol 22:3774–3788. https://doi.org/10.1111/gcb.13382

    Article  Google Scholar 

  • Fraga H, de Cortazar Atauri IG, Malheiro AC, Moutinho-Pereira J, Santos JA (2017) Viticulture in Portugal: A review of recent trends and climate change projections. Oeno One 51(2):61–69. https://doi.org/10.20870/oeno-one.2017.51.2.1621

  • Guilpart N, Metay A, Gary C (2014) Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. Eur J Agron 54:9–20. https://doi.org/10.1016/j.eja.2013.11.002

    Article  Google Scholar 

  • Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine, and conservation. Proc Nat Acad Sci USA (PNAS) 10(17):6907–6912. https://doi.org/10.1073/pnas.1210127110

    Article  Google Scholar 

  • Hengl T (2007) A Practical Guide to Geostatistical Mapping of Environmental Variables. JRC Scientific and Technical Research series, Office for Official Publications of the European Communities, Luxembourg, EUR 22904 EN.

  • Herrera Nuñez JC, Ramazzotti S, Stagnari F, Pisante M (2011) A multivariate clustering approach for characterization of the Montepulciano d’Abruzzo Colline Teramane area. Am J Enol Vitic 62(2):239–244. https://doi.org/10.5344/ajev.2010.10008

    Article  Google Scholar 

  • Huglin P (1978) Nouveau Mode d’Évaluation des Possibilités Héliothermiques d’un Milieu Viticole. CR Acad Agr France 64:1117–1126

    Google Scholar 

  • International Organisation of Vine and Wine (OIV) (2019) 2019 Statistical Report on World Vitiviniculture. https://www.oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf. Accessed 25 Feb 2022

  • International Soil Reference and Information Centre (ISRIC). SoilGrids – global gridded soil information. https://soilgrids.org. Accessed 25 Feb 2022

  • Irimia L, Patriche CV, Quenol H (2013a) Viticultural Zoning: A Comparative Study Regarding the Accuracy of Different Approaches in Vineyards Climate Suitability Assessment. Cercetări Agronomice În Moldova 3(155):95–106

    Article  Google Scholar 

  • Irimia LM, Patriche CV, Quenol H (2013b) Viticultural potential assessment and natural terroir units delineation using environmental criteria specific to Romanian viticulture. Case study: Urlaţi wine-growing center, Dealu Mare vineyard. Soil Forming Factors and Processes from the Temperate Zone 12(1):34–42

  • Irimia LM, Patriche CV, Quenol H (2014) Analysis of viticultural potential and delineation of homogeneous viticultural zones in a temperate climate region of Romania. J Int Sci Vigne Vin 48(3):145–167. https://doi.org/10.20870/oeno-one.2014.48.3.1576

  • Irimia LM, Patriche CV, Bucur GM, Quénol H, Cotea VV (2015) Spatial Distribution of Grapes Sugar Content and its Correlations with Climate Characteristics and Climate Suitability in the Huși (Romania) Wine Growing Region. Not Bot Horti Agrobo 43(1):250–258. https://doi.org/10.15835/nbha4319673

  • Irimia LM, Patriche CV, Roșca B (2018a) Climate change impact on climate suitability for wine production in Romania. Theor Appl Climatol 133(1–2):1–14. https://doi.org/10.1007/s00704-017-2156-z

    Article  Google Scholar 

  • Irimia LM, Patriche CV, Murariu OC (2018b) The impact of climate change on viticultural potential and wine grape varieties of a temperate wine growing region. Appl Ecol Environ Res 16(3):2663–2680. https://doi.org/10.15666/aeer/1603_26632680

  • Irimia L, Patriche CV, Quenol H, Sfîcă L, Foss C (2018c) Shifts in climate suitability for wine production as a result of climate change in a temperate climate wine region of Romania. Theor Appl Climatol 131:1069–1081. https://doi.org/10.1007/s00704-017-2033-9

    Article  Google Scholar 

  • Irimia LM, Patriche CV, LeRoux R, Quénol H, Tissot C, Sfîcă L (2019) Projections of Climate Suitability for Wine Production for the Cotnari Wine Region (Romania). Present Environment and Sustainable Development 13(1):5–18. https://doi.org/10.2478/pesd-2019-0001

    Article  Google Scholar 

  • Jones GV, Webb LB (2010) Climate Change, Viticulture, and Wine: Challenges and Opportunities. J Wine Res 21(2–3):103–106. https://doi.org/10.1080/09571264.2010.530091

    Article  Google Scholar 

  • Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Change 73:319–343. https://doi.org/10.1007/s10584-005-4704-2

    Article  Google Scholar 

  • Keller M (2010) Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Aust J Grape Wine R 16:56–69. https://doi.org/10.1111/j.1755-0238.2009.00077.x

    Article  Google Scholar 

  • Kenny GJ, Harrison PA (1992) The effects of climate variability and change on grape suitability in Europe. J Wine Res 3(3):163–183. https://doi.org/10.1080/09571269208717931

    Article  Google Scholar 

  • Kovacs E, Puskas J, Pozsgai A (2017) Positive Effects of Climate Change on the Field of Sopron Wine-Growing Region in Hungary. In: Karacostas T, Bais A, Nastos P (Eds) Perspectives on Atmospheric Sciences. Springer Atmospheric Sciences. Springer, Cham https://doi.org/10.1007/978-3-319-35095-0_86

  • Kryza M, Szymanovski M, BlasM (2015) Observed changes in SAT and GDD and the climatological suitability of the Poland-Germany-Czech Republic transboundary region for wine grapes cultivation. Theor Appl Climatol 122(1):207–218. https://doi.org/10.1007/s00704-014-1296-7

  • Lazoglou G, Anagnostopoulou C, Koundouras S (2018) Climate change projections for Greek viticulture as simulated by a regional climate model. Theor Appl Climatol 133:551–567. https://doi.org/10.1007/s00704-017-2198-2

    Article  Google Scholar 

  • Lebon E (2002) Changements climatiques: Quelles conséquences pour la viticulture? In: 6emes Recontres Rhodaniennes, Orange, France, Institut Rhodanien, pp 31–36

  • Lereboullet AL, Beltrando G, Bardsley DK, Rouvellac E (2014) The viticultural system and climate change: coping with long-term trends in temperature and rainfall in Roussillon, France. Reg Environ Change 14:1951–1966. https://doi.org/10.1007/s10113-013-0446-2

    Article  Google Scholar 

  • Lorenzo M, Ramos AM, Brands S (2016) Present and future climate conditions for winegrowing in Spain. Reg Environ Change 16:617–627. https://doi.org/10.1007/s10113-015-0883-1

    Article  Google Scholar 

  • Maciejczak M, Mikiciuk J (2019) Climate change impact on viticulture in Poland. Int J Clim Chang Str 11(2):254–264. https://doi.org/10.1108/IJCCSM-02-2018-0021

    Article  Google Scholar 

  • Malheiro AC, Santos JA, Fraga H, Pinto JG (2010) Climate change scenarios applied to viticultural zoning in Europe. Clim Res 43:163–177. https://doi.org/10.3354/cr00918

    Article  Google Scholar 

  • Marx W, Haunschild R, Bornmann L (2017) Climate change and viticulture - a quantitative analysis of a highly dynamic research field. Vitis 56:35–43. https://doi.org/10.5073/vitis.2017.56.35-43

    Article  Google Scholar 

  • Meng Q, Liu Z, Borders BE (2013) Assessment of regression kriging for spatial interpolation – comparisons of seven GIS interpolation methods. Cartogr Geogr Inf Sci 40(1):28–39. https://doi.org/10.1080/15230406.2013.762138

    Article  Google Scholar 

  • Mesterházy I, Mészáros R, Pongrácz R (2014) The effects of climate change on grape production in Hungary. Időjárás 118(3):193–206

    Google Scholar 

  • Moral FJ (2010) Comparison of different geostatistical approaches to map climate variables: application to precipitation. Int J Climatol 30:620–631. https://doi.org/10.1002/joc.1913

    Article  Google Scholar 

  • Moriondo M, Jones GV, Bois B, Dibari C, Ferrise R, Trombi G, Bindi M (2013) Projected shifts of wine regions in response to climate change. Clim Change 119(3):825–839. https://doi.org/10.1007/s10584-013-0739-y

    Article  Google Scholar 

  • Neethling E, Barbeau G, Coulon-Leroy C, Quénol H (2019) Spatial complexity and temporal dynamics in viticulture: A review of climate-driven scales. Agr Forest Meteorol 276–277:107618. https://doi.org/10.1016/j.agrformet.2019.107618

    Article  Google Scholar 

  • Nemani RR, White MA, Cayan DR, Jones GV, Running SW, Coughlan JC (2001) Asymmetric warming over coastal California and its impact on the premium wine industry. Clim Res 19:25–34. https://doi.org/10.3354/Cr019025

    Article  Google Scholar 

  • Nesbitt A, Kemp B, Steele C, Lovett A, Dorling S (2016) Impact of recent climate change and weather variability on the viability of UK viticulture – combining weather and climate records with producers’ perspectives. Aust J Grape Wine R 22:324–335. https://doi.org/10.1111/ajgw.12215

    Article  Google Scholar 

  • Neumann PA, Matzarakis A (2014) Potential climate change impacts on winegrape must density and titratable acidity in southwest Germany. Clim Res 59:161–172. https://doi.org/10.3354/cr01216

    Article  Google Scholar 

  • Ollat N, Diakou-Verdin P, Carde JP, Barrieu F, Gaudillère J-P, Moing A (2002) Grape berry development: A review. J Int Sci Vigne Vin 36:109–131. https://doi.org/10.20870/oeno-one.2002.36.3.970

  • Olsen JL, Olesen A, Breuning-Madsen H, Balstrøm T (2011) A method to identify potential cold-climate vine growing sites – a case study from Røsnæs in Denmark. Geogr Tidsskr 111(1):73–84. https://doi.org/10.1080/00167223.2011.10669523

    Article  Google Scholar 

  • Oşlobeanu M, Macici M, Georgescu M, Stoian V (1991) Zonarea Soiurilor de Viţă de Vie în România (Zoning Vine Varieties in Romania). Ceres Publishing, Bucureşti (in Romanian)

  • Patriche CV (2011) Aspects regarding the uncertainty of spatial statistical models of climate parameters. Időjárás 115(1–2):13–30

    Google Scholar 

  • Patriche CV, Irimia LM (2020) Evolution of ecological viticulture potential in Romania during 1961–2013 period. In : Bonnardot V, Quenol H (Eds) Actes du XXXIIIème Colloque de l’Association Internationale de Climatologie, Rennes, France, pp 535–539

  • Prăvălie R, Bandoc G, Patriche C, Tomescu M (2017) Spatio-temporal trends of mean air temperature during 1961–2009 and impacts on crop (maize) yields in the most important agricultural region of Romania. Stoch Environ Res Risk Assess 31:1923–1939. https://doi.org/10.1007/s00477-016-1278-7

    Article  Google Scholar 

  • Prăvălie R, Sîrodoev I, Patriche CV, Roșca B, Piticar A, Bandoc G, Sfîcă L, Tişcovschi A, Dumitraşcu M, Chifiriuc C, Mănoiu V, Iordache S (2020) The impact of climate change on agricultural productivity in Romania. A country-scale assessment based on the relationship between climatic water balance and maize yields in recent decades. Agr Syst 179:102767. https://doi.org/10.1016/j.agsy.2019.102767

    Article  Google Scholar 

  • Pythoud K (2006) La modélisation de paramètres climatiques pour la caractérisation des terroirs viticoles tessinois. In: Proceedings of the “Symposium International du Merlot” (1–2 September 2006), Lugano, Switzerland, pp.28–33

  • Riou C (1994) Le Déterminisme Climatique de la Maturation du Raisin: Application au Zonage de la Teneur en Sucre dans la Communauté Européenne (The effect of climate on ripening: application to the zoning of sugar content in the European Community). Office des Publications Officielles des Communautés Européennes, EUR 15863, Luxembourg

  • Santos JA, Fraga H, Malheiro AC, Moutinho-Pereira J, Dinis LT, Correia C, Moriondo M, Leolini L, Dibari C, Costafreda-Aumedes S, Kartschall T, Menz C, Molitor D, Junk J, Beyer M, Schultz HR (2020) A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl Sci 10(9):3092. https://doi.org/10.3390/app10093092

    Article  Google Scholar 

  • Sirnik I, Quénol H, Jiménez-Bello MA, Manzano J, Irimia LM, Patriche CV, Žust A (2019) Viticultural potential assessment and its spatial delineation analysis in Goriška Brda viticultural region (Slovenia). 21th GiESCO International meeting, June, 23–28, 2019, Thessaloniki, Greece

  • Teodorescu Ş, Popa AI, Sandu G (1987) Oenoclimatul României (Romanian Oenoclimate). Scientific and Encyclopedic Publishing, Bucureşti (in Romanian)

  • Teslić N, Vujadinović M, Ruml M, Ricci A, Vuković A, Parpinello GP, Versari A (2019) Future climatic suitability of the Emilia-Romagna (Italy) region for grape production. Reg Environ Change 19:599–614. https://doi.org/10.1007/s10113-018-1431-6

    Article  Google Scholar 

  • Tomasi D, Gaiotti F, Jones GV (2013) The Power of the Terroir: the Case Study of Prosecco Wine. Springer Press, Basel, Switzerland

  • Van Leeuwen C, Darriet P (2016) The Impact of Climate Change on Viticulture and Wine Quality. J Wine Econ 11(1):150–167. https://doi.org/10.1017/jwe.2015.21

    Article  Google Scholar 

  • Van Leeuwen C, Destrac-Irvine A, Dubernet M, Duchêne E, Gowdy M, Marguerit E, Pieri P, Parker A, de Rességuier L, Ollat N (2019) An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 9:514. https://doi.org/10.3390/agronomy9090514

    Article  Google Scholar 

  • Vigl EL, Schmid A, Moser F, Balotti A, Gartner E, Katz H, Quendler S, Ventura S, Raifer B (2018) Upward shifts in elevation – a winning strategy for mountain viticulture in the context of climate change? E3S Web of Conferences 50: 02006, https://doi.org/10.1051/e3sconf/20185002006

  • Vintila R, Munteanu I, Cojocaru G, Radnea C, Turnea D et al (2004) The Geographic Information System of the Soil Resources of Romania SIGSTAR-200: Development and main types of applications. Proc. XVIIth Romanian National Conference of Soil Science, 34A:439-449 (in Romanian)

  • Watkins RL (1997) Vineyard site suitability in Eastern California. GeoJournal 43(3):229–239. https://doi.org/10.1023/A:1006879927146

    Article  Google Scholar 

  • Webb LB, Whetton PH, Barlow EWR (2008) Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust J Grape Wine R 13(3):165–175. https://doi.org/10.1111/j.1755-0238.2007.tb00247.x

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Valeriu Patriche.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patriche, C.V., Irimia, L.M. Mapping the impact of recent climate change on viticultural potential in Romania. Theor Appl Climatol 148, 1035–1056 (2022). https://doi.org/10.1007/s00704-022-03984-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-022-03984-y

Navigation