Skip to main content
Log in

A probe into the behaviour of total ozone time series through multifractal detrended fluctuation analysis

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The present study reports a multifractal detrended fluctuation analysis (MF-DFA) of total ozone time series. Considering daily total ozone concentration (TOC) data ranging from 2015 to 2019, derived from Ozone Monitoring Instrument (OMI)/Aura observations, we have created a new profile by subtracting the trend. Subsequently, we have divided the profile \({X}_{i}\) into non-intersecting segments of equal time scale varying from 25 to 30. Fitting a second order polynomial, we have eliminated the local trend from each segment, and thereafter, we have computed the detrended variance. Finally, the multifractal behaviour has been identified, and the singularity spectra has helped us in obtaining the generalised Hurst exponent which in this case has come out to be greater than 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The total ozone concentration data have been obtained from OMDOAO3e: OMI/Aura Ozone (O3) DOAS Total Column L3.

Code availability

Computation has been carried out using Mathematica.

References

  • Antón, M., Kroon, M., López, M., Vilaplana, J.M., Bañón, M., van der A, R., Veefkind, J.P., Stammes, P. and Alados‐Arboledas, L., 2011. Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula. J Geophys Res: Atmos 116(D22).

  • Aghelpour P, Mohammadi B, Biazar SM (2019) Long-term monthly average temperature forecasting in some climate types of Iran, using the models SARIMA, SVR, and SVR-FA. Theoret Appl Climatol 138(3):1471–1480

    Article  Google Scholar 

  • Bucsela EJ, Celarier EA, Wening MO, Gleason JF, Veefkind JP, Boersma KF, Brinksma EJ (2006) Algorithm for NO2 vertical column retrieval from the Ozone Monitoring Instrument. IEEE Trans Geosci Remote Sens 44:1245–1258. https://doi.org/10.1109/TGRS.2005.863715

    Article  Google Scholar 

  • Boersma KF et al (2007) Near-real time retrieval of tropospheric NO2 from OMI. Atmos Chem Phys 7:2103–2118

    Article  Google Scholar 

  • Biazar SM, Ferdosi FB (2020) An investigation on spatial and temporal trends in frost indices in Northern Iran. Theoret Appl Climatol 141:907–920

    Article  Google Scholar 

  • Biazar SM, Fard AF, Singh VP, Dinpashoh Y, Majnooni-Heris A (2020) Estimation of evaporation from saline-water with more efficient input variables. Pure Appl Geophys 177(11):5599–5619

    Article  Google Scholar 

  • Chattopadhyay G, Chattopadhyay S (2008) A probe into the chaotic nature of total ozone time series by correlation dimension method. Soft Comput 12(10):1007–1012

    Article  Google Scholar 

  • Chattopadhyay G, Chattopadhyay S (2020) Spectral analysis approach to study the association between total ozone concentration and surface temperature. Int J Environ Sci Technol 17:4353–4358

    Article  Google Scholar 

  • Chakraborty S, Chattopadhyay S (2021) A time-domain approach to the total ozone time series and a test of its predictability within a univariate framework. Remote Sens Lett 12(1):20–29

    Article  Google Scholar 

  • Crato N, Linhares RR, Lopes SRC (2010) Statistical properties of detrended fluctuation analysis. J Stat Comput Simul 80(6):625–641

    Article  Google Scholar 

  • Cracknell AP, Varotsos CA (2007) Editorial and cover: Fifty years after the first artificial satellite: from Sputnik 1 to Envisat. Int J Remote Sens 28(10):2071–2072

    Article  Google Scholar 

  • Cracknell AP, Varotsos CA (2011) New aspects of global climate-dynamics research and remote sensing. Int J Remote Sens 32(3):579–600

    Article  Google Scholar 

  • Efstathiou MN, Varotsos CA (2010) On the altitude dependence of the temperature scaling behaviour at the global troposphere. Int J Remote Sens 31(2):343–349

    Article  Google Scholar 

  • Gómez-Gómez, J., Carmona-Cabezas, R., Ariza-Villaverde, A.B., de Ravé, E.G. and Jiménez-Hornero, F.J., 2021. Multifractal detrended fluctuation analysis of temperature in Spain (1960–2019). Phys A: Stat Mech Appl 126118.

  • Ivanova K, Ausloos M (1999) Application of the detrended fluctuation analysis (DFA) method for describing cloud breaking. Physica A 274(1–2):349–354

    Article  Google Scholar 

  • Kantelhardt JW, Koscielny-Bunde E, Rego HH, Havlin S, Bunde A (2001) Detecting long-range correlations with detrended fluctuation analysis. Physica A 295(3–4):441–454

    Article  Google Scholar 

  • Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316(1–4):87–114

    Article  Google Scholar 

  • Király A, Bartos I, Jánosi IM (2006) Correlation properties of daily temperature anomalies over land. Tellus A: Dyn Meteorol Oceanogr 58(5):593–600

    Article  Google Scholar 

  • Kondratyev KY, Varotsos CA (1996) Global total ozone dynamics. Environ Sci Pollut Res 3(3):153–157

    Article  Google Scholar 

  • Koutsogiannis P, Thomou E, Stamatis H, Gournis D, Rudolf P (2020) Advances in fluorescent carbon dots for biomedical applications. Advances in Physics: X 5(1):1758592

    Google Scholar 

  • Levelt PF, van den Oord GHJ, Dobber MR, Malkki A, Visser H, de Vries J, Stammes P, Lundell JOV, Saari H (2006a) The ozone monitoring instrument. IEEE Trans Geosci Rem Sens 44:1093–1101. https://doi.org/10.1109/TGRS.2006.872333

    Article  Google Scholar 

  • Kalamaras N, Tzanis CG, Deligiorgi D, Philippopoulos K, Koutsogiannis I (2019) Distribution of air temperature multifractal characteristics over Greece. Atmosphere 10(2):45

    Article  Google Scholar 

  • Kroon, M., Veefkind, J.P., Sneep, M., McPeters, R.D., Bhartia, P.K. and Levelt, P.F., 2008. Comparing OMI‐TOMS and OMI‐DOAS total ozone column data. J Geophys Res: Atmos 113(D16).

  • Levelt PF, Hilsenrath E, Leppelmeier GW, van den Oord GH, Bhartia PK, Tamminen J, de Haan JF, Veefkind JP (2006b) Science objectives of the ozone monitoring instrument. IEEE Trans Geosci Remote Sens 44(5):1199–1208

    Article  Google Scholar 

  • Mallick, J., Talukdar, S., Alsubih, M., Salam, R., Ahmed, M., Kahla, N.B. and Shamimuzzaman, M., 2020. Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis. Theor Appl Climatol 1–19.

  • Matsoukas C, Islam S, Rodriguez-Iturbe I (2000) Detrended fluctuation analysis of rainfall and streamflow time series. J Geophys Res: Atmos 105(D23):29165–29172

    Article  Google Scholar 

  • Di Noia A, Sellitto P, Del Frate F, Cervino M, Iarlori M, Rizi V (2013) Tropospheric ozone column retrieval from OMI data by means of neural networks: a validation exercise with ozone soundings over Europe. EURASIP J Adv Signal Process 2013(1):1–12

    Article  Google Scholar 

  • NASA, 2021. https://disc.gsfc.nasa.gov/information/glossary (accessed on 04 December, 2021)

  • McPeters, R. D., and R. S. Stolarski. 2015. “Satellites and remote sensing: measuring ozone from space-TOMS and SBUV.” Encyclopedia of Atmospheric Sciences (Second Edition) 87–94https://doi.org/10.1016/B978-0-12-382225-3.00351-0

  • Meyer PG, Kantz H (2019) Inferring characteristic timescales from the effect of autoregressive dynamics on detrended fluctuation analysis. New J Phys 21(3):033022

    Article  Google Scholar 

  • Philippopoulos K, Kalamaras N, Tzanis CG, Deligiorgi D, Koutsogiannis I (2019) Multifractal detrended fluctuation analysis of temperature reanalysis data over Greece. Atmosphere 10(6):336

    Article  Google Scholar 

  • Sellitto P, Bojkov BR, Liu X, Chance K, Frate FD (2011) Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring Instrument by means of a neural network algorithm. Atmos Meas Tech 4(11):2375–2388

    Article  Google Scholar 

  • Sellitto P, Dufour G, Eremenko M, Cuesta J, Dauphin P, Forêt G, Gaubert B, Beekmann M, Peuch VH, Flaud JM (2013) Analysis of the potential of onepossible instrumental configuration of the next generation of IASI instruments to monitor lower tropospheric ozone. Atmos Meas Tech 6(3):621–635

    Article  Google Scholar 

  • Talkner P, Weber RO (2000) Power spectrum and detrended fluctuation analysis: application to daily temperatures. Phys Rev E 62:150–160

    Article  Google Scholar 

  • Telesca L, Lovallo M (2011) Analysis of the time dynamics in wind records by means of multifractal detrended fluctuation analysis and the Fisher-Shannon information plane. Journal of Statistical Mechanics: Theory and Experiment 2011(07):P07001

    Article  Google Scholar 

  • Telesca L, Pierini JO, Scian B (2012) Investigating the temporal variation of the scaling behavior in rainfall data measured in central Argentina by means of detrended fluctuation analysis. Physica A 391(4):1553–1562

    Article  Google Scholar 

  • Tzanis CG, Koutsogiannis I, Philippopoulos K, Kalamaras N (2020) Multifractal detrended cross-correlation analysis of global methane and temperature. Remote Sens 12(3):557

    Article  Google Scholar 

  • Varotsos C (2005) Power-law correlations in column ozone over Antarctica. Int J Remote Sens 26(16):3333–3342

    Article  Google Scholar 

  • Varotsos C, Efstathiou M, Tzanis C, Deligiorgi D (2012) On the limits of the air pollution predictability: the case of the surface ozone at Athens, Greece. Environ Sci Pollut Res 19(1):295–300

    Article  Google Scholar 

  • Varotsos CA, Efstathiou MN, Cracknell AP (2013) On the scaling effect in global surface air temperature anomalies. Atmos Chem Phys 13:5243–5253. https://doi.org/10.5194/acp-13-5243-2013

    Article  Google Scholar 

  • Varotsos CA, Mazei YA, Burkovsky I, Efstathiou MN, Tzanis CG (2016) Climate scaling behaviour in the dynamics of the marine interstitial ciliate community. Theor Appl Climatol 125(3–4):439–447

    Article  Google Scholar 

  • Varotsos C, Mazei Y, Novenko E, Tsyganov AN, Olchev A, Pampura T, Efstathiou M (2020a) A new climate nowcasting tool based on paleoclimatic data. Sustainability 12(14):5546. https://doi.org/10.3390/su12145546

    Article  Google Scholar 

  • Varotsos CA, Mazei YA (2020b) Erratum: future temperature extremes will be more harmful: a new critical factor for improved forecasts. Int J Environ Res Public Health 17(9):3288

    Article  Google Scholar 

  • Varotsos P, Sarlis NV, Skordas ES 2011 Natural time analysis: the new view of time: precursory seismic electric signals, earthquakes and other complex time series. Springer Science & Business Media

  • Zhang, L., Li, H., Liu, D., Fu, Q., Li, M., Faiz, M.A., Ali, S., Khan, M.I. and Li, T., 2021. Application of an improved multifractal detrended fluctuation analysis approach for estimation of the complexity of daily precipitation. International Journal of Climatology. https://rmets.onlinelibrary.wiley.com/doi/https://doi.org/10.1002/joc.7092

  • Zhang, Q., Streets, D.G. and He, K., 2009. Satellite observations of recent power plant construction in Inner Mongolia, China. Geophys Res Lett 36(15).

Download references

Acknowledgements

The authors sincerely acknowledge the insightful comments from the anonymous reviewers. The total ozone concentration data have been obtained from https://giovanni.gsfc.nasa.gov/giovanni (downloaded on January 3, 2020).

Author information

Authors and Affiliations

Authors

Contributions

Both the authors have equal contribution to the paper.

Corresponding author

Correspondence to Surajit Chattopadhyay.

Ethics declarations

Ethics approval

This is an original work and is submitted to this journal only.

Consent to participate

As this submission does not belong to Life Sciences, there is nothing relevant to declare in this section.

Consent for publication

Once accepted, the authors have the full consent to the publisher to publish the work.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Chattopadhyay, S. A probe into the behaviour of total ozone time series through multifractal detrended fluctuation analysis. Theor Appl Climatol 148, 671–677 (2022). https://doi.org/10.1007/s00704-022-03967-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-022-03967-z

Navigation