Skip to main content

Advertisement

Log in

Effect of climate change on potential distribution of oriental beech (Fagus orientalis Lipsky.) in the twenty-first century in Turkey

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The rising temperatures and decreasing rainfall are expected to have negative effects on ecosystem services by causing significant shrinkage or shift of forest distribution particularly in Mediterranean basin. In this study, it was aimed to determine the distribution of oriental beech (Fagus orientalis Lipsky.) by modelling the current and future potential locations of the habitats. With Maximum Entropy (MaxEnt) approach, we predicted its distribution under current and future conditions (RCP 4.5 and RCP 8.5) in Turkey. Modelling was performed by using eight bioclimatic variables that show significant relationship to the current distribution of oriental beech and were widely used in the literature. The fitted model had high quality (93.5% AUC) and is biological meaningful. The prediction of warmer condition in future showed that the populations on the southern slopes of the North Anatolian Mountains were expected to shrink and that there would be reduction in the populations found in the main distribution area in the Istranca Mountains and the Northern Anatolia, especially in populations in the transition zone of Central Anatolia. Also, oriental beech would lose its isolated-marginal populations in the southeast of Turkey. The results highlight the importance of a genetic conservation programme for beech population in Turkey. Otherwise, the genetic pools seem to extinct under climate change. Furthermore, the paper is intended to provide a starting point for a monitoring of oriental beech at the edge of its distribution, to observe its climatic migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Availability of data and material

The data belongs to the General Directory of Forestry, Turkey. That is why, we are not allowed to distribute the data ourselves, yet, it is available upon request to the General Directoryof Forestry, Turkey. Contactinformation: Republic of Turkey, General Directorate of Forestry Address: Beştepe Mahallesi Sogutozu Caddesi No:8/1 06,560 Yenimahalle/Ankara/TURKEY.

Code availability

Not applicable.

References

  • Kose N, Guner HT, Harley GL, Guiot J 2017 Spring temperature variability over Turkey since 1800CE reconstructed from a broad network of tree-ring data. Climate of the Past 13:1-15. https://doi.org/10.5194/cp-13-1-2017

  • Akkemik Ü (2000) Dendroclimatology of umbrella pine (Pinus pinea L.) in Istanbul. Turkey Tree-Ring Bulletin 56:17–20

    Google Scholar 

  • Akkemik Ü, Dagdeviren N, Aras A (2005) A preliminary reconstruction (A.D. 1635–2000) of spring precipitation using oak tree rings in the west. Int J Biometeorol 49:297–302. https://doi.org/10.1007/s00484-004-0249-8

    Article  Google Scholar 

  • Akkemik Ü, D’Arrigo R, Cherubini P, Kose N, Jacoby G (2008) Tree-ring reconstructions of precipitation and streamflow for north-western Turkey. Int J Climatol 28:173–183. https://doi.org/10.1002/joc.1522

    Article  Google Scholar 

  • Alonzo TA, Pepe MS (2002) Distribution-free ROC analysis using binary regression techniques. Biostatistics 3(3):421–432. https://doi.org/10.1093/biostatistics/3.3.421

    Article  Google Scholar 

  • Alsos IG, Ehrich D, Thuiller W, Eidesen PB, Tribsch A, Schönswetter P, Lagaye C, Taberle TP, Brochmann C 2012 Genetic consequences of climate change for northern plants. Proceedings Biological sciences / The Royal Society, 279(1735), 2042 51 https://doi.org/10.1098/rspb.2011.2363

  • Ata C 1995 Si1viculture techniques (in Turkish). Zonguldak Karaelmas University, Bartın Faculty of Forestry, No: 3–4, Bartın, Turkey, 449 p.

  • Atalay İ 1992 Kayın (Fagus orientalis Lipsky.) Ormanlarının Ekolojisi ve Tohum Transferi Yönünden Bölgelere Ayrılması. Orman Bakanlığı, Orman Ağaçları ve Tohumları Islah Araştırma Müdürlüğü, Yayın No: 5, Ankara, Turkey, 209 p.

  • Atay İ 1982 Natural Regeneration Methods II, Dogal Gençleştirme Yöntemleri II. Istanbul University, Faculty of Forestry, Pub. No: 320, Istanbul, Turkey, 160 p.

  • Avci M 2018 Türkiye’nin Bitki Çeşitliliği ve Coğrafi Açıdan Değerlendirmesi (Ed. Ü. Akkemik) Türkiye’nin Doğal-Egzotik Ağaç ve Çalıları. Orman Genel Müdürlüğü Yayınları, Ankara. s: 30–44.

  • Barbati A, Scarascia G, Ayan S, Blasi E, Calama R, Canaveira P, Cicatiello C, Collalti A, Corona P, Del Rio M, Ducci F, Perugini L 2018 State of Mediterranean forests 2018. Chapter 8: Adaptation and mitigation, p. 128–146, Published by the FAO of the United Nations and Plan Bleu, Regional Activity Center of UN Environment / Mediterranean Action Plan, ISBN FAO: 978–92–5–131047–2 ISBN Plan Bleu: 978–2–912081–52–0, Rome. http://www.fao.org/3/CA2081EN/ca2081en.PDF

  • Bugday E (2018) Application of artificial neural network system based on ANFIS using GIS for predicting forest road network suitability mapping. Fresenius Environ Bull 27(3):1656–1668

    Google Scholar 

  • Conedera M, Krebs P, Gehring E, Wunder J, Hülsmann L, Abegg M, Maringer J 2021 How future-proof is Sweet chestnut (Castanea sativa) in a global change context? In: Forest Eco Manag 494, S. 119320. https://doi.org/10.1016/j.foreco.2021.119320.

  • Dagtekin D, Şahan EA, Denk T, Köse N, Dalfes HN (2020) Past, present and future distributions of oriental beech (Fagus orientalis)under climate change projections. PLoS ONE 15(11):e0242280. https://doi.org/10.1371/journal.pone.0242280

    Article  Google Scholar 

  • Dagtekin D, Sahan EA, Denk T, Kose N, Dalfes HN 2019 Predicting Late Quaternary distribution and future refugia of oriental beech (Fagus orientalis Lipsky) in Asia minor. International Conference on Climate Change & Forestry (ICCCF’2019) 12–15 2019, TOD Publication Number: 49, Conference Proceeding, 177–182. Antalya.

  • Dalfes HN, Karaca M, Şen ÖL, Güven Ç (Ed.) (2007) Climate change scenarios for Turkey. Climate change & Turkey impacts, sectoral analyses, socio economic dimensions. Ankara: United Nations Development

    Google Scholar 

  • Demircan M, Gürkan H, Eskioğlu O, Arabacı H, Coşkun M 2017 Climate change projections for Turkey three models and two scenarios. Turkish J Water Sci and Manag, 1 1 22 43. https://doi.org/10.31807/tjwsm.297183

  • Dyderski MK, Paź S, Frelich LE, Jagodziński AM (2018) How much does climate change threaten European forest tree species distributions? Glob Change Biol 24:1150–1163. https://doi.org/10.1111/gcb.13925

    Article  Google Scholar 

  • Efron B 1982 The Jackknife, the bootstrap, and other resampling plans. SIAM, monograph #38, CBMS-NSF.

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, McC Overton J, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Sobero´n J, Williams S, Wisz MS, Zimmermann NE, (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ 2011 A statistical explanation of MaxEnt for ecologists Divers Distrib 17 1 43 57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

  • Erlat E, Turkes M 2011 Analysis of observed variability and trends in numbers of frost days in Turkey for the period 1950–2010 Int J Climatol. 32: 1889–1898. https://doi.org/10.1002/joc.2403

  • Ertekin M, Kırdar E, Ayan S 2015 Effects of tree ages, exposures and elevations on some seed characteristics of oriental beech (Fagus orientalis Lipsky.), Journal of South-east European Forestry, 6 1 15 23. https://doi.org/10.15177/seefor.15-03

  • ESRI 2011 ArcGIS desktop: release 10. Redlands, CA: Environmental Systems Research Institute.

  • F Europe 2015 State of Europe’s forests 2015: Europe’s status & trends in sustainable forest management in Europe Madrid

  • EUROSTAT 2018 Industrial roundwood by species: export in Euro.

  • Falk W, Hempelmann N 2013 Species favourability shift in Europe due to climate change: a case study for Fagus sylvatica L. and Picea abies (L.) Karst. Based on an ensemble of climate models. J. Climatol. 1–18. https://doi.org/10.1155/2013/787250

  • Garcia K, Lasco R, Ines A, Lyon B, Pulhin F (2013) Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines. Appl Geogr 44:12–22. https://doi.org/10.1016/j.apgeog.2013.07.005

    Article  Google Scholar 

  • García Ruiz JM, López Moreno JI, Vicente Serrano SM, Lasanta Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth-Sci Rev 105(34):121–139. https://doi.org/10.1016/j.earscirev.2011.01.006

    Article  Google Scholar 

  • Giorgi F, Lionello P 2008 Climate change projections for the Mediterranean region. Global and Planetary Change 63, 90–104. https://doi.org/10.1016/j.gloplacha.2007.09.005

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815. https://doi.org/10.1890/02-3114

    Article  Google Scholar 

  • Guner HT, Kose N, Harley GL (2017) A 200-year reconstruction of Kocasu River (Sakarya River Basin, Turkey) streamflow derived from a tree-ring network. Int J Biometeorol 61:427–437. https://doi.org/10.1007/s00484-016-1223-y

    Article  Google Scholar 

  • Haghshenas M, Marvi Mohadjer MR, Attarod P, Pourtahmasi K, Feldhaus J, Moein Sadeghi SM (2016a) Climate effect on tree-ring widths of Fagus orientalis in the Caspian forests, northern Iran. For Sci Technol 12(4):176–182. https://doi.org/10.1080/21580103.2016.1144542

    Article  Google Scholar 

  • Haghshenas M, Mohadjer MR, Attarod P, Pourtahmasi K, Feldhaus J, Sadeghi SM (2016b) Climate effect on tree-ring widths of Fagus orientalis in the Caspian forests, northern Iran. Forest Sci Technol 12(4):176–182

    Article  Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–207. https://doi.org/10.1038/nclimate1687

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36. https://doi.org/10.1148/radiology.143.1.7063747

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007, vol 4. Published for the intergovernmental panel on climate change, Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC 2014 Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva.

  • Kandemir G, Kaya Z 2009 EUFORGEN Technical Guidelines for genetic conservation and use of oriental beech (Fagus orientalis). Bioversity International, Rome, Italy. 6 pages.

  • Kandemir GE, Tayanc Y, Cengel B, Velioglu E 2016 Molecular phylogeny of beech (Fagus) populations in Turkey. Journal of Forestry Research 2016/2, A, 1:4, 69–79. https://doi.org/10.17568/oad.84722

  • Keenan RJ (2012) Adaptation of forests and forest management to climate change: an editorial. Forests 3(1):75–82. https://doi.org/10.3390/f3010075

    Article  Google Scholar 

  • Kellomaki S, Rouvinen I, Peltola H, Strandman H, Steinbrecher R (2001) Impact of global warming on the tree species composition of boreal forests in Finland and effects on emissions of isoprenoids. Glob Chang Biol 7:531–544. https://doi.org/10.1046/j.1365-2486.2001.00414.x

    Article  Google Scholar 

  • Köble R, Seufert G (Eds.) 2001 Novel maps for forest tree species in Europe.

  • Kose N, Guner HT (2012) The effect of temperature and precipitation on the intra-annual radial growth of Fagus orientalis Lipsky in Artvin, Turkey. Turk J Agric for 36:501–509. https://doi.org/10.3906/tar-1109-4

    Article  Google Scholar 

  • Kose N, Akkemik Ü, Dalfes HN, Özeren MS, Tolunay D (2012) Tree-ring growth of Pinus nigra Arn. subsp. pallasiana under different climate conditions throughout western Anatolia. Dendrochronologia 30:295–301. https://doi.org/10.1016/j.dendro.2012.04.003

    Article  Google Scholar 

  • Kovats RS, Valentini R, Bouwer LM, Georgopoulou E, Jacob D, Martin E, Rounsevell M, Soussana JF (2014) Europe. In: Climate change 2014: impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Barros, V.R., C.B. Field, D.J. Dokken, M.D. Mastrandrea, K.J. Mach, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1267–1326. https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-hap23_FINAL.pdf, accessed 20.11.2019

  • Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes M, de Winter W 2010 Modelling exploration of the future of European beech Fagus sylvatica L. under climate change—range, abundance, genetic diversity and adaptive response. Forest Ecology and Management, 259 11 2213–2222. https://doi.org/10.1016/j.foreco.2009.12.023

  • Kullman L (2008) Thermophilic tree species reinvade subalpine Sweden—early responses to anomalous late Holocene climate warming. Arctic, Antarctic, Alpine Res 40:104–110. https://doi.org/10.1657/1523-0430(06-120)[KULLMAN]2.0.CO;2

    Article  Google Scholar 

  • Laaribya S, Alaoui A, Ayan S, Benabou A, Labbaci A, Ouhaddou H, Bijou M 2021 Prediction by Maximum Entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco, FORESTIST, 71 2 63 69. https://doi.org/10.5152/forestist.2021.20059

  • Lenoir J, Gégout JC, Marquet PA, de Ruffray P, Brisse H 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771. https://doi.org/10.1126/science.1156831

  • Li X, Wang Y (2013) Applying various algorithms for species distribution modelling. Integrative Zoology 8(2):124–135. https://doi.org/10.1111/1749-4877.12000

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia Gonzalo J, Seidl R, Delzon S, Corona P, Kolstrom M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259(4):698–709. https://doi.org/10.1016/j.foreco.2009.09.023

    Article  Google Scholar 

  • López-Tirado J, Vessella F, Stephan J, Ayan S, Schirone B, Hidalgo PJ (2021). Effect of climate change on potential distribution of Cedrus libani A. Rich in the twenty‑first century: an Ecological Niche Modeling assessment. New Forests, 52: 363-376https://doi.org/10.1007/s11056-020-09798-y

  • Maiorano L, Cheddadi R, Zimmermann NE, Pellissier L, Petitpierre B, Pottier J, Laborde H, Hurdu BI, Pearman PB, Psomas A, Singarayer JS, Broennimann O, Vittoz P, Dubuis A, Edwards ME, Binney HA, Guisan A (2013) Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecol Biogeogr 22:302–317. https://doi.org/10.1111/j.1466-8238.2012.00767.x

    Article  Google Scholar 

  • Martin-Benito D, Pederson N, Kose N, Doğan M, Bugmann H, Mosulishvili M, Bigler C (2018) Pervasive effects of drought on tree growth across a wide climatic gradient in the temperate forests of the Caucasus. Global Ecology and Biogeography 27:1314–1325. https://doi.org/10.1111/geb.12799

    Article  Google Scholar 

  • Meier ES, Lischke H, Schmatz DR, Zimmermann NE (2012) Climate, competition and connectivity affect future migration and ranges of European trees. Global Ecol. Biogeogr. 21:164–178. https://doi.org/10.1111/j.1466-8238.2011.00669.x

    Article  Google Scholar 

  • Metz CE 1978 Basic principles of ROC analysis. In Seminars in nuclear medicine.8 4 283 298). 1978, WB Saunders. https://doi.org/10.1016/S0001-2998(78)80014-2

  • Mizunaga H, Sako S, Nakao Y, Shimano Y (2005) Factors affecting the dynamics of the population of Fagus crenata in the Takakuma Mountains, the southern limit of its distribution area. J For Res. 10:481–486. https://doi.org/10.1007/s10310-005-0165-8

    Article  Google Scholar 

  • O’Donnell MS, Ignizio DA 2012 Bioclimatic predictors for supporting ecological applications in the conterminous United States: U.S. Geological Survey Data Series 691, 10 p.

  • OGM (2015) Türkiye orman varlığı. https://www.ogm.gov.tr/ekutuphane/Yayinlar/T% C3%BCrkiye%20Orman%20Varl%C4%B1%C4%9F%C4%B1–2016–2017.pdf

  • Ozdemir H, Unal A, Kindap T, Turuncoglu UU, Durmusoglu ZO, Khan M, Tayanc M, Karaca M (2011) Quantification of the urban heat island under a changing climate over Anatolian Peninsula. Theor Appl Climatology 108(1–2):31–38. https://doi.org/10.1007/s00704-011-0515-8

    Article  Google Scholar 

  • Ozel HB, Ertekin M 2011 Growth models in investigating oriental beech (Fagus orientalis Lipsky.) juvenilities growth performance in the Western Black Sea in Turkey Devrek-Akçasu Case Study. Romanian Biotechnol Letters 16 1 5850–5857.

  • Panagos P, Ballabio C, Meusburger K, Spinoni J, Alewell C, Borrelli P (2017) Towards estimates of future rainfall erosivity in Europe based on REDES and WorldClim datasets. J hydrol 548:251–262. https://doi.org/10.1016/j.jhydrol.2017.03.006

    Article  Google Scholar 

  • Pearson RG 2007 Species’ distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History. Available at: http://ncep.amnh.org

  • Penuelas J, Boada M (2003) A global change-induced biome shifts in the Montseny mountains (NE Spain). Glob. Change Biol. 9:131–140. https://doi.org/10.1046/j.1365-2486.2003.00566.x

    Article  Google Scholar 

  • Peters R (1997) Beech forests: woody species composition, populations and spatial aspects. Beech forests. Springer, Dordrecht, pp 89–130

    Chapter  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum Entropy modeling of species geographic distributions. Ecological Modeling 190(3–4):231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Qin A, Liu B, Guo Q, Bussmann RW, Ma F, Jian Z, Gexi X, Pei S (2017) MaxEnt modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Global Ecol Conserv 10:139–146. https://doi.org/10.1016/j.gecco.2017.02.004

    Article  Google Scholar 

  • Rice ME, Harris GT (2005) Comparing effect sizes in follow-up studies: ROC area, Cohen’s d, and r. Law and human behav 29(5):615–620. https://doi.org/10.1007/s10979-005-6832-7

    Article  Google Scholar 

  • Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Vacchiano G, Weber P, Wohlgemuth T,Zweifel R, Dobbertin M 2013 Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob. Change Biol. 19, 229–240. https://doi.org/10.1111/gcb.12038

  • Ruiz-Labourdette D, Schmitz MF, Pineda FD (2013) Changes in tree species composition in Mediterranean mountains under climate change: Indicators for conservation planning. Ecol Indic 24:310–323. https://doi.org/10.1016/j.ecolind.2012.06.021

    Article  Google Scholar 

  • Sen ÖL 2013 A holistic view of climate change and its impacts in Turkey. Istanbul Policy Center Sabancı University-Stiftung Mercator Initiative. http://ipc.sabanciuniv.edu/en/wp-content/uploads/2012/09/AHolistic-View-of-Climate-Change-and-Its-Impacts-in-Turkey.pdf

  • Steven J, Phillips, Dudík M, Schapire RE 2020 Maxent software for modelling species niches and distributions (Version 3.4.1). Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 2020–4–27.

  • Talu N, Sinan Ö, Özgün S, Dougherty W, Fencl A 2011 Turkey’s National Climate Change Adaptation Strategy and Action Plan (Draft). (D. Ş. Tapan, Ed.). Ankara: Ministry of Environ and Urban.

  • Tayanc M, Ulaş İ, Dogruel M (2009) Karaca M (2009) Climate change in Turkey for the last half century. Climatic Change 94:483–502. https://doi.org/10.1007/s10584-008-9511-0

    Article  Google Scholar 

  • Tharwat A 2018 Classification assessment methods. Applied Computing and Informatics.

  • Thurm EA, Hernandez L, Baltensweiler A, Ayan S, Razstovits E, Bielak K, Zlatanov TM, Hladnik D, Balic B, Freudenschuss A, Büchsenmeister R, Falk W (2018) Alternative tree species under climate warming in managed European forests. For Ecol Manage 430:485–497. https://doi.org/10.1016/j.foreco.2018.08.028

    Article  Google Scholar 

  • Toros H 2012 Spatio temporal variation of daily extreme temperatures over Turkey. Int J Climatol, 32(7), 1047 1055. https://doi.org/10.1002/joc.2325

  • Touchan R, Akkemik Ü, Huges MH, Erkan N (2007) May–June precipitation reconstruction of southwestern Anatolia, Turkey during the last 900 years from tree rings. Quat Res 68:196–202. https://doi.org/10.1016/j.yqres.2007.07.001

    Article  Google Scholar 

  • UNDP 2019 Turkey UNDP Climate Change Adaptation. Available at: https://www.adaptation-undp.org/explore/western-asia/turkey [Accessed 28 Feb. 2019].

  • Walther GR, Beißner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541. https://doi.org/10.1111/j.1654-1103.2005.tb02394.x

    Article  Google Scholar 

  • WorldClim 2019 Web site: www.worldclim.org. Access date: 19/08/2019

  • Yalcin S 2012 Modelling the current and future ranges of Turkish pine (Pinus brutia) and oriental beech (Fagus orientalis) ın Turkey ın the face of clımate change. Master Thesis, The Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara.

  • Yaltırık F (1982) Fagus L. In: Davis PH (ed) Flora of Turkey, vol 7. University Press, Edinburgh, pp 657–658

    Google Scholar 

  • Yaman B, Özel HB, Yıldız Y, Pulat E, Işık B (2021) Hydrological evaluations and effects of climate on the radial growth of oriental beech (Fagus orientalis Lipsky) in Abdipasa, Bartın. Turkey Forestist 71(2):102–109

    Article  Google Scholar 

  • Yılmaz M (2010) Is there a future for the isolated oriental beech (Fagus orientalis Lipsky) forests in Southern Turkey? Acta Silv. Lign Hung 6:111–114

    Google Scholar 

Download references

Acknowledgements

We are thankful to General Directorate of Forestry, Turkey, for providing current distribution data of Fagus orientalis in Turkey.

Author information

Authors and Affiliations

Authors

Contributions

SA and HBO performed background research and designed the study. EB obtained the data and analysed them by support TV. The modelling results were reviewed by EAT. SA wrote the manuscript. All authors discussed the results and commented on the manuscript. The order of the authors is based on the level of their contribution.

Corresponding author

Correspondence to Sezgin AYAN.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 216 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AYAN, S., BUGDAY, E., VAROL, T. et al. Effect of climate change on potential distribution of oriental beech (Fagus orientalis Lipsky.) in the twenty-first century in Turkey. Theor Appl Climatol 148, 165–177 (2022). https://doi.org/10.1007/s00704-022-03940-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-022-03940-w

Navigation