Skip to main content

Trends of extreme air temperature and precipitation and their impact on corn and soybean yields in Nebraska, USA

Abstract 

Numerous studies have recently shown the effects of global warming on worldwide and regional precipitation and temperature patterns. Despite knowing that the spatial and temporal impact of climate variability on agricultural production on different scales is substantial, few studies have addressed the effect of climate change on crop yield. This study aimed to provide information on regional trends by evaluating ETCCDMI extreme indices based on long-term (from 1970 to 2015), multi-station (57 weather stations), daily air temperature, and precipitation observations across the state of Nebraska located in the Central Great Plains, USA. We analyzed climate variability’s spatial and temporal impact on agricultural production since agriculture is the most important economic sector for Nebraska. A predominant increase in mean maximum and minimum temperatures in Nebraska in the last four decades was observed with a nighttime warming trend. The extreme maximum temperatures and diurnal temperature range indices are environmental factors that negatively impact the rainfed crop production in Nebraska. As expected, the extreme precipitation events indices showed significant positive correlations with the rainfed crop yield. Further research is needed to evaluate the effect of extreme temperatures on plant growth at different phenological stages and its impact on productivity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

https://hprcc.unl.edu/index.php; United States Department of Agriculture/National Agricultural Statistics Service (USDA-NASS, 2018) (https://www.nass.usda.gov/Data_and_Statistics/).

Code availability

Rclimdex (http:/etccdi.pacificclimate.org/software.shtml).

References

  • Adisa OM, Botai CM, Botai JO, Hassen A, Darkey D, Tesfamariam E, Adisa AF, Adeola AM, Ncongwane KP (2018) Analysis of agro-climatic parameters and their influence on maize production in South Africa. Theoret Appl Climatol 134:991–1004

    Article  Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109

    Google Scholar 

  • Bathke, D.J.; Oglesby, R.J.; Rowe, C.M.; Whilhite, D.A. (2014). Understanding and assessing climate change: implications for Nebraska. A synthesis report to support decision making and natural resource management in a changing climate. School of Natural Resources, Institute of Agriculture and Natural Resources. University of Nebraska – Lincoln, Lincoln, p 73

  • Challinor AJ, Watson J, Lobell DB, Howden SM, Smith DR, Chhetri N (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4(4):287–291. https://doi.org/10.1038/nclimate2153

  • Dahal V, Gautam S, Bhattarai R (2018) Analysis of the long-term precipitation trend in Illinois and its implications for agricultural production. Water 10:433. https://doi.org/10.3390/w10040433

    Article  Google Scholar 

  • Dai S, Shulski MD, Hubbard KG, Takle ES (2016) A spatiotemporal analysis of Midwest US temperature and precipitation trends during the growing season from 1980 to 2013. Int J Climatol 36:517–525. https://doi.org/10.1002/joc.4354

    Article  Google Scholar 

  • Donat MG et al (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res Atmos 118:2098–2118. https://doi.org/10.1002/jgrd.50150

    Article  Google Scholar 

  • Dulière V, Zhang Y, Salathé EP (2013) Changes in twentieth-century extreme temperature and precipitation over the western United States based on observations and regional climate model simulations. J Clim 26(21):8556–8575

    Article  Google Scholar 

  • Frankson, R.; Kunkel, K.; Stevens, L.; Shulski, M. (2017). Nebraska State Climate Summary. NOAA Technical Report NESDIS 149-NE, 4 pp.

  • Fu G, Barber ME, Chen S (2010) Hydro-climatic variability and trends in Washington State for the last 50 years. Hydrol Process 24:866–878. https://doi.org/10.1002/hyp.7527

    Article  Google Scholar 

  • Hartmann, D.L.; Klein Tank, A.M.G.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.; Dentener, F.J. et al. (2013). Observations: atmosphere and surface. In climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  • Hatfield JL (2013) North American perspectives on potential climate change and agricultural responses. In: Hillel D, Rosenzweig C (eds) Handbook of climate change and agroecosystems. Mainland Press, Singapore, pp 33–55

    Google Scholar 

  • Hatfield JL (2016) Increased temperatures have dramatic effects on growth and grain yield of three maize hybrids. Agric Environ Lett 1:150006. https://doi.org/10.2134/ael2015.10.0006

    Article  Google Scholar 

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extremes 10A:4–10. https://doi.org/10.1016/j.wace.2015.08.001

    Article  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe DW (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370. https://doi.org/10.2134/agronj2010.0303

    Article  Google Scholar 

  • Hatfield JL, Wright-Morton L, Hall B (2018) Vulnerability of grain crops and croplands in the Midwest to climatic variability and adaptation strategies. Clim Change 146:263–275. https://doi.org/10.1007/s10584-017-1997-x

    Article  Google Scholar 

  • Haylock MR, Peterson TC, Alves LM, Ambrizzi T, Anunciacao YMT, Baez J, Barros VR, Berlato MA, Bidegain M, Coronel G, Garcia VJ, Grimm AM, Karoly D, Marengo JA, Marino MB, Moncunill DF, Nechet D, Quintana J, Rebello E, Rusticucci M, Santos JL, Trebejo I, Vincent LA (2006) Trends in total and extreme South American rainfall 1960–2000 and links with sea surface temperature. J Clim 19:1490–1512

    Article  Google Scholar 

  • Högy P, Poll C, Marhan S, Kandeler E, Fangmeier A (2013) Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley. Food Chem 136:1470–1477

    Article  Google Scholar 

  • IPCC, 2021: Summary for policymakers. In: Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [MassonDelmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.

  • IPCC, 2018: Summary for policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. In Press.

  • Irmak S, Mutiibwa D (2010) On the dynamics of canopy resistance: generalized-linear estimation and its relationships with primary micrometeorological variables. Water Resour Res 46(1–20):W08526. https://doi.org/10.1029/2009WR008484

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, London

    Google Scholar 

  • Klein Tank, A.M.G.; Zwiers, F.W.; Zhang, X. (2009). Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, Climate data and monitoring WCDMP‐No. 72, WMO‐TD No. 1500, 56pp.

  • Koirala KB, Giri YP, Rijal TR, Zaidi PH, Sadananda AR, Shrestha J (2017) Evaluation of grain yield of heat stress resilient maize hybrids in Nepal. Int J Appl Sci Biotech 5:511. https://doi.org/10.3126/ijasbt.v5i4.18774

    Article  Google Scholar 

  • Kunkel KE, Karl TR, Brooks H, Kossin J, Lawrimore J, Arndt D, Bosart L, Changnon D, Cutter SL, Doesken N, Emanuel K, Groisman PY, Katz RW, Knutson T, O’Brien J, Paciorek CJ, Peterson TC, Redmond K, Robinson D, Trapp J, Vose R, Weaver S, Wehner M, Wolter K, Wuebbles D (2013) Monitoring and understanding trends in extreme storms: state of knowledge. Bull Am Meteor Soc 94:499–514. https://doi.org/10.1175/BAMS-D-11-00262.1

    Article  Google Scholar 

  • Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013) Effect of drought and heat stresses on plant growth and yield: a review. Int Agrophys 27:463–477. https://doi.org/10.2478/intag-2013-0017

    Article  Google Scholar 

  • Liu X, Jian J, Wguanghua, Herbert SJ (2008) Soybean yield physiology and development of high-yielding practices in Northeast China. Field Crop Res 105:157–171. https://doi.org/10.1016/j.fcr.2007.09.003

    Article  Google Scholar 

  • Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Nocco MA, Smail RA, Kucharik CJ (2019) Observation of irrigation-induced climate change in the Midwest United States. Glob Change Biol 25:3472–3484. https://doi.org/10.1111/gcb.14725

    Article  Google Scholar 

  • Oliveira MC, Butts L, Werle R (2019) Assessment of cover crop management strategies in Nebraska, US. Agriculture 9:1–14

    Article  Google Scholar 

  • Pearson K (1920) Notes on the history of correlation. Biometrika 13:25–45

    Article  Google Scholar 

  • Peterson TC, Zhang X, Brunet-India M, Vazquez-Aguirre JL (2008) Changes in North American extremes derived from daily weather. J Geophys Res 113:1–9. https://doi.org/10.1029/2007JD009453

    Article  Google Scholar 

  • Pielke RA (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus Convective rainfall. Rev Geophys 39(2):151–177. https://doi.org/10.1029/1999RG000072

    Article  Google Scholar 

  • Rahmani V, Harrington J Jr (2019) Assessment of climate change for extreme precipitation indices: a case study from the central United States. Int J Climatol 39:1013–1025. https://doi.org/10.1002/joc.5858

    Article  Google Scholar 

  • Rice, J.R.; Joyce, L.A.; Regan, C.; Winters, D.; Truex, R. (2018). Climate change vulnerability assessment of aquatic and terrestrial ecosystems in the U.S. Forest Service Rocky Mountain Region. Gen. Tech. Rep. RMRS-GTR-376. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 216 p.

  • Ruiz-Alvarez O, Singh VP, Enciso-Medina J, Ontiveros-Capurata RE, Santos CAC (2019) Observed trends in daily precipitation extreme indices in Aguascalientes. Meteorological Applications. In press, Mexico. https://doi.org/10.1002/met.1838

    Book  Google Scholar 

  • Santos CAC, Neale CMU, Rao TVR, Silva BB (2011) Trends in indices for extremes in daily temperature and precipitation over Utah. USA Int J Climatol 31:1813–1822. https://doi.org/10.1002/joc.2205

    Article  Google Scholar 

  • Schoof JT, Robeson SM (2016) Projecting changes in regional temperature and precipitation extremes in the United States. Weather Clim Extremes 11:28–40. https://doi.org/10.1016/j.wace.2015.09.004

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389. https://doi.org/10.2307/2285891

    Article  Google Scholar 

  • Shah F, Huang J, Cui K, Nie L, Shah T, Chen C, Wang K (2011) Impact of high-temperature stress on rice plant and its traits related to tolerance. J Agri Sci 149:545–556. https://doi.org/10.1017/S0021859611000360

    Article  Google Scholar 

  • Sharma V, Irmak S (2012a) Mapping spatially interpolated precipitation, reference evapotranspiration, actual crop evapotranspiration, and net irrigation requirements in Nebraska: Part I. Precipitation and reference evapotranspiration. Trans ASABE 55:907–921

    Article  Google Scholar 

  • Sharma V, Irmak S (2012b) Mapping spatially interpolated precipitation, reference evapotranspiration, actual crop evapotranspiration, and net irrigation requirements in Nebraska: Part II. Actual crop evapotranspiration and net irrigation requirements. Trans ASABE 55:923–936

    Article  Google Scholar 

  • Shulski MD, Baule W, Stiles C, Umphlett N (2015) A historical perspective on Nebraska’s variable and changing climate. Great Plains Res 25:109–120. https://doi.org/10.1353/gpr.2015.0023

    Article  Google Scholar 

  • Skaggs KE, Irmak S (2012) Long-term trends in air temperature distribution and extremes, growing degree-days, and spring and fall frosts for climate impact assessments on agricultural practices in Nebraska. J Appl Meteorol Climatol 51:2060–2073

    Article  Google Scholar 

  • Steward DR, Andrew JA (2016) Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110. Agric Water Manag 170:36–48. https://doi.org/10.1016/j.agwat.2015.10.003

    Article  Google Scholar 

  • Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis, Part 3, in Proceedings of Koninalijke Nederlandse Akademie van Wetenschatpen A 53: 1397-1412

  • Thiery W, Visser AJ, Fischer EM et al (2020) Warming of hot extremes alleviated by expanding irrigation. Nat Commun 11:290. https://doi.org/10.1038/s41467-019-14075-4

    Article  Google Scholar 

  • Tian J, Liu J, Wang J, Li C, Nie H, Yu F (2017) Trend analysis of temperature and precipitation extremes in major grain producing area of China. Int J Climatol 37:672–687

    Article  Google Scholar 

  • USDA, United States Department of Agriculture National Agricultural Statistics Service. 2018 https://quickstats.nass.usda.gov/USDA-NASS (2010) Usual Planting and Harvesting Dates for U.S. Field Crops, U.S. Department of Agriculture-National Agricultural Statistics Service (USDA-NASS), Washington, DC.

  • USDA-NASS, 2014. 2012 census of agriculture: farm and ranch irrigation survey (2013), in: (USDA-NASS), Census of Agriculture. U.S. Department of Agriculture-National Agricultural Statistics Service (USDA-NASS), Washington, DC.

  • USDA-NASS, 2018. https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=NEBRASKA.

  • USGCRP, 2018: Impacts, risks, and adaptation in the United States: Fourth National Climate Assessment, Volume II [Reidmiller, D.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, K.L.M. Lewis, T.K. Maycock, and B.C. Stewart (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 1515 pp. https://doi.org/10.7930/NCA4.2018

  • Vincent LA, Mekis E (2006) Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmos Ocean 44:177–193. https://doi.org/10.3137/ao.440205

    Article  Google Scholar 

  • Vincent LA, Peterson TC, Barros VR, Marino MB, Rusticucci M, Carrasco G, Ramirez E, Alves LM, Ambrizzi T, Berlato MA, Grimm AM, Marengo JA, Molion L, Moncunill DF, Rebello E, Anunciacao YMT, Quintana J, Santos JL, Baez J, Coronel G, Garcia J, Trebejo I, Bidegain M, Haylock MR, Karoly D (2005) Observed trends in indices of daily temperature extremes in South America 1960–2000. J Clim 18:5011–5023

    Article  Google Scholar 

  • Vincent LA, Zhang X, Mekis É, Wan H, Bush EJ (2018) Changes in Canada’s climate: trends in indices based on daily temperature and precipitation data. Atmos Ocean 56:332–349. https://doi.org/10.1080/07055900.2018.1514579

    Article  Google Scholar 

  • Xiao Y, Pan Y, Luo L, Deng H, Zhang G, Tang W, Chen L (2011) Quantitative trait loci associated with pollen fertility under high temperature stress at flowering stage in rice (Oryza sativa). Rice Sci 18:204–209. https://doi.org/10.1016/S1672-6308(11)60028-0

    Article  Google Scholar 

  • Zhang J, Felzer BS, Troy TJ (2016) Extreme precipitation drives groundwater recharge: the Northern High Plains Aquifer, central United States, 1950–2010. Hydrol Process 30:2533–2545. https://doi.org/10.1002/hyp.10809

    Article  Google Scholar 

  • Zhang, X.; Yang, F. (2004). RClimDex (1.0) user guide. Climate Research Branch Environment Canada: Downsview, Ontario, Canada.

  • Zhu X, Troy TJ, Devineni N (2019) Stochastically modeling the projected impacts of climate change on rainfed and irrigated US crop yields. Environ Res Lett 14:074021. https://doi.org/10.1088/1748-9326/ab25a1

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the High Plains Regional Climate Center (HPRCC) (https://hprcc.unl.edu/index.php) for providing the daily precipitation and temperature dataset. Also, acknowledge the United States Department of Agriculture/National Agricultural Statistics Service (USDA-NASS) for providing the county-level yield data for irrigated and rainfed corn and soybean. The first author also thanks the National Council for Scientific and Technological Development (CNPq) for the Research Productivity Grant (Grant N. 304493/2019-8). Finally, the authors also acknowledge Ph.D. Thiago V. dos Santos for his essential comments and Lacey Bodnar from the Daugherty Water for Food Global Institute (DWFI) at the University of Nebraska-Lincoln for her invaluable assistance and the DWFI for all the support.

Funding

This study was funded by the Coordination for the Improvement of Higher Education Personnel (CAPES)—Finance Code 001 (Visiting Professor Fellowship—Grant No. 88881.172029/2018–01).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, C. A. C. dos Santos, C. M. U. Neale, and C. M. Rowe; methodology, C. A. C. dos Santos and O. Ruiz-Alvarez; software, C. A. C. dos Santos and O. Ruiz-Alvarez; validation, C. A. C. dos Santos and M. M. Mekonnen; formal analysis, C. A. C. dos Santos, C. M. U. Neale, M. M. Mekonnen, I. Z. Gonçalves, G. de Oliveira, O. Ruiz-Alvarez, B. Safa, and C. M. Rowe; investigation, C. A. C. dos Santos, C. M. U. Neale, and C. M. Rowe; resources, C. A. C. dos Santos and C. M. U. Neale; data curation, C. A. C. dos Santos; writing-original draft preparation, C. A. C. dos Santos, C. M. U. Neale, M. M. Mekonnen, B. Safa, and C. M. Rowe; writing-review and editing, C. A. C. dos Santos, C. M. U. Neale, M. M. Mekonnen, I. Z. Gonçalves, G. de Oliveira, O. Ruiz-Alvarez, B. Safa, and C. M. Rowe; visualization, C. A. C. dos Santos and O. Ruiz-Alvarez; supervision, C. A. C. dos Santos, C. M. U. Neale, and C. M. Rowe. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Carlos A. C. dos Santos.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dos Santos, C.A.C., Neale, C.M.U., Mekonnen, M.M. et al. Trends of extreme air temperature and precipitation and their impact on corn and soybean yields in Nebraska, USA. Theor Appl Climatol 147, 1379–1399 (2022). https://doi.org/10.1007/s00704-021-03903-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03903-7