Skip to main content

Advertisement

Log in

Precipitation climatology and spatiotemporal trends over the Arabian Peninsula

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

There exists a need to document details related to the spatiotemporal climatology of precipitation over the Arabian Peninsula (Arabia) based on a sound assessment. Areal precipitation was calculated for Arabia, subtropical Arabia (STA), and tropical Arabia (TA) using a weighting scheme to adjust for latitudinal changes in grid-cell areas and extract statistics that have geographical/spatial interpretation based on a quality-controlled spatially-distributed precipitation dataset (1980–2019). Areal annual precipitation mean over Arabia (STA/TA) is 88.61 mm (85.72/92.79). While boreal winter and spring seasons are the wet seasons over Arabia (29, 40%) and STA (36, 40%), boreal spring and summer are the wet seasons over TA (41, 25%). Only 25% of Arabia (STA/TA) receives more than 110.73 (108.48/113.73) mm of precipitation annually. Spatiotemporal trends were explored using the Mann–Kendall test, applied to trend free pre-whitened data, and the Theil-Sen estimator. Average areal precipitation over Arabia and STA is decreasing during the boreal winter and spring seasons at varying rates. On the other hand, boreal summer and fall precipitation is increasing over Arabia, STA, and TA with only that of TA summer being statistically significant. An elongated region extending from southwest to northeast has a statistically significant negative trend in annual, spring, and winter precipitation. The southern part of Arabia is dominated by positive trends in annual, summer, and fall precipitation with only isolated areas being statistically significant. The statistically significant decreasing trend in wet season precipitation over Arabia calls for more conservative water resource management strategies and bold adaptation measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

he precipitation dataset is provided free of charge by the Global Precipitation Climatology Centre operated by Deutscher Wetterdienst, Germany.

Code availability

Available after request.

References

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Gerontol Ser A Biol Med Sci 111:D05109. https://doi.org/10.1029/2005JD006290

    Article  Google Scholar 

  • Almazroui M, Abid MA, Athar H, Islam MN, Ehsan MA (2013) Interannual variability of rainfall over the Arabian Peninsula using the IPCC AR4 Global Climate Models. Int J Climatol 33:2328–2340

    Article  Google Scholar 

  • Almazroui M, Islam MN, Athar H, Jones PD, Rahman MA (2012a) Recent climate change in the Arabian Peninsula: annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int J Climatol 32:953–966. https://doi.org/10.1002/joc.3446

    Article  Google Scholar 

  • Almazroui M, Islam MN, Jones PD, Athar H, Rahman MA (2012b) Recent climate change in the Arabian Peninsula: seasonal rainfall and temperature climatology of Saudi Arabia for 1979–2009. Atmos Res 111:29–45

    Article  Google Scholar 

  • Almazroui M (2011) Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos Res 99:400–414

    Article  Google Scholar 

  • Almazroui M (2020) Rainfall trends and extremes in Saudi Arabia in recent decades. Atmosphere 11. https://doi.org/10.3390/atmos11090964

  • Almazroui M, Kamil S, Ammar K, Keay K, Alamoudi AO (2016) Climatology of the 500-hPa Mediterranean storms associated with Saudi Arabia wet season precipitation. Clim Dyn 47(9):3029–3042

    Article  Google Scholar 

  • Almazroui M, Islam MN, Saeed S, Saeed F, Ismail M (2020) Future changes in climate over the Arabian Peninsula based on CMIP6 multimodel simulations. Earth Systems and Environment 4:611–630. https://doi.org/10.1007/s41748-020-00183-5

    Article  Google Scholar 

  • AlSarmi SH, Washington R (2011) Recent observed climate change over the Arabian Peninsula. J Gerontol Ser A Biol Med Sci 116:D11109. https://doi.org/10.1029/2010JD015459

    Article  Google Scholar 

  • Almazroui M, Saeed S (2020) Contribution of extreme daily precipitation to total rainfall over the Arabian Peninsula. Atmospheric Research, 231, 104672.

  • AlSarmi SH, Washington R (2014) Changes in climate extremes in the Arabian Peninsula: analysis of daily data. Int J Climatol 34:1329–1345. https://doi.org/10.1002/joc.3772

    Article  Google Scholar 

  • Athar H (2015) Teleconnections and variability in observed rainfall over Saudi Arabia during 1978–2010. Atmospheric Science Letters 16:373–379

    Article  Google Scholar 

  • Attada R, Dasari HP, Chowdary JS, Yadav RK, Knio O, Hoteit I (2019) Surface air temperature variability over the Arabian Peninsula and its links to circulation patterns. Int J Climatol 39:445–464

    Article  Google Scholar 

  • Barth HJ, Steinkohl F (2004) Origin of winter precipitation in the central coastal lowlands of Saudi Arabia. J Arid Environ 57:101–115

    Article  Google Scholar 

  • Basheer M, Elagib NA (2019) Performance of satellite-based and GPCC 7.0 rainfall products in an extremely data-scarce country in the Nile Basin. Atmos Res 215:128–140

    Article  Google Scholar 

  • Chakraborty A, Behera SK, Mujumdar M, Ohba R, Yamagata T (2006) Diagnosis of tropospheric moisture over Saudi Arabia and influences of IOD and ENSO. Mon Weather Rev 134:598–617

    Article  Google Scholar 

  • Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-yr monthly analysis based on gauge observations. J Hydrometeorol 3:249–266

    Article  Google Scholar 

  • Danneberg J (2012) Changes in runoff time series in Thuringia, Germany – Mann-Kendall trend test and extreme value analysis. Adv Geosci 31:49–56. https://doi.org/10.5194/adgeo-31-49-2012

  • Dasari HP, Langodan S, Viswanadhapalli Y, Vadlamudi BR, Papadopoulos VP, Hoteit I (2018) ENSO influence on the interannual variability of the Red Sea convergence zone and associated rainfall. 2018. Int J Climatol 38:761–775

    Article  Google Scholar 

  • De Vries AJ, Feldstein SB, Riemer M, Tyrlis E, Sprenger M, Baumgart M, Fnais M, Lelieveld J (2016) Dynamics of tropical–extratropical interactions and extreme precipitation events in Saudi Arabia in autumn, winter and spring. Q J R Meteorol Soc 142:1862–1880

    Article  Google Scholar 

  • De Vries AJ, Tyrlis E, Edry D, Krichak SO, Steil B, Lelieveld J (2013) Extreme precipitation events in the Middle East: dynamics of the Active Red Sea Trough. Journal of Geophysical Research: Atmospheres 118:7087–7108

    Article  Google Scholar 

  • Donat MG, Peterson TC, Brunet M, King AD, Almazroui M, Kolli RK, Boucherf D, Al-Mulla AY, Nour AY, Aly AA, Nada TA, Semawi MM, Al Dashti HA, Salhab TG, El Fadli KI, Muftah MK, Dah Eida S, Badi W, Driouech F, El Rhaz K, Abubaker MJY, Ghulam AS, Erayah AS, Mansour MB, Alabdouli WO, Al Dhanhani JS, Al Shekaili MN (2014) Changes in extreme temperature and precipitation in the Arab region: long-term trends and variability related to ENSO and NAO. Int J Climatol 34:581–592. https://doi.org/10.1002/joc.3707

    Article  Google Scholar 

  • El Kenawy AM, McCabe MF (2016) A multi-decadal assessment of the performance of gauge-and model-based rainfall products over Saudi Arabia: climatology, anomalies and trends. Int J Climatol 36:656–674. https://doi.org/10.1002/joc.4374

    Article  Google Scholar 

  • Evan AT, Camargo SJ (2011) A climatology of Arabian Sea cyclonic storms. J Clim 24:140–158

    Article  Google Scholar 

  • Fisher M, Membery DA (1998) Climate. In Vegetation of the Arabian Peninsula, vol. 1, 1st ed., edited by Ghazanfar S and Fisher M. pp. 5–38, Kluwer Acad., Dordrecht, Netherland.

  • Golian S, Javadian M, Behrangi A (2019) On the use of satellite, gauge, and reanalysis precipitation products for drought studies. Environ Res Lett 14:075005. https://doi.org/10.1088/1748-9326/ab2203

    Article  Google Scholar 

  • Hamed KH (2008) Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J Hydrol 349:350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int J Climatol 34:623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  • Hasanean H, Almazroui M (2015) Rainfall: features and variations over Saudi Arabia, a review. Climate 3:578–626. https://doi.org/10.3390/cli3030578

    Article  Google Scholar 

  • Haylock MR, Peterson TC, Alves LM, Ambrizzi T, Anunciacao YMT, Baez J, Barros VR, Berlato MA, Bidegain M, Coronel G, Corradi V, Garcia VJ, Grimm AM, Karoly D, Marengo JA, Marino MB, Moncunill DF, Nechet D, Quintana J, Rebello E, Rusticucci M, Santos JL, Trebejo I, Vincent LA (2006) Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J Clim 19:1490–1512. https://doi.org/10.1175/jcli3695.1

    Article  Google Scholar 

  • Hulme M (1996) Recent climatic change in the world’s drylands. Geophys Res Lett 23:61–64. https://doi.org/10.1029/95GL03586

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007. The physical science basis. In: Solomon Q, Qin D, Manning M, Chen Z and others (eds) Contribution of Working Group 1 to the 4th assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change [Field, CB, V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 pp.

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

  • IPCC (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, CB, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, YO. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1132 pp.

  • Ito R, Shiogama H, Nakaegawa T, Takayabu I (2020) Uncertainties in climate change projections covered by the ISIMIP and CORDEX model subsets from CMIP5. Geoscientific Model Development 13:859–872

    Article  Google Scholar 

  • Jones PD, Hulme M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int J Climatol 16:361–377

    Article  Google Scholar 

  • Kang I-S, Rashid IU, Kucharski F, Almazroui M, AlKhalaf AK (2015) Multi-decadal changes in the relationship between ENSO and wet-season precipitation in the Arabian Peninsula. J Clim 28:4743–4752

    Article  Google Scholar 

  • Karl TR, Knight RW (1998) Secular trends of precipitation amount, frequency, and intensity in the United States. Bull Am Meteor Soc 79:231–241

    Article  Google Scholar 

  • Kendall MG (1955) Rank correlation methods. Charles Griffin, 196 pp.

  • Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680

    Article  Google Scholar 

  • KN K, Ouarda TBMJ, Sandeep S, Ajayamohan RS (2016) Wintertime precipitation variability over the Arabian Peninsula and its relationship with ENSO in the CAM4 simulations. Clim Dyn 47(7–8):2443–2454. https://doi.org/10.1007/s00382-016-2973-2

  • Kotwicki V, Al SZ (2009) Climates of the Arabian Peninsula–past, present, future. Int J Clim Chang Strategies Manag 1:297–310

    Article  Google Scholar 

  • Krichak SO, Breitgand JS, Feldstein SB (2012) A conceptual model for the identification of the Active Red Sea Trough Synoptic events over the southeastern Mediterranean. Journal Journal of Applied Meteorology and Climatology 51:962–971

    Article  Google Scholar 

  • Kwarteng AY, Dorvlo AS, Kumar GTV (2009) Analysis of a 27 year rainfall data (1977–2003) in the Sultanate of Oman. Int J Climatol 29:605–617. https://doi.org/10.1002/joc.1727

    Article  Google Scholar 

  • Liebmann B, Hoerling MP, Funk C, Bladé I, Dole RM, Allured D, Quan X, Pegion P, Eischeid JK (2014) Understanding recent eastern Horn of Africa rainfall variability and change. J Clim 27:8630–8645

    Article  Google Scholar 

  • Lioubimtseva E (2004) Climate change in arid environments: revisiting the past to understand the future. Prog Phys Geogr 28:502–530

    Article  Google Scholar 

  • Lyon B, DeWitt DG (2012) A recent and abrupt decline in the East African long rains. Geophys Res Lett 39. https://doi.org/10.1029/2011GL050337

  • Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Matsuura K, Willmott CJ (2012) Terrestrial precipitation: 1900–2010 Gridded monthly time series (Version 3.02).

  • Nashwan MS, Shahid S (2019) Symmetrical uncertainty and random forest for the evaluation of gridded precipitation and temperature data. Atmos Res 230: 104632

  • New M, Todd M, Hulme M, Jones P (2001) Precipitation measurements and trends in the twentieth century. Int J Climatol 21:1889–1922. https://doi.org/10.1002/joc.680

    Article  Google Scholar 

  • Nicholson SE (2017) Climate and climatic variability of rainfall over eastern Africa. Rev Geophys 55:590–635

    Article  Google Scholar 

  • Nickl E, Willmott CJ, Matsuura K, Robeson SM (2010) Changes in annual land-surface precipitation over the twentieth and early twenty-first century. Ann Assoc Am Geogr 100:1–11. https://doi.org/10.1080/00045608.2010.500241

    Article  Google Scholar 

  • Nogueira M (2019) Multi-scale structure of tropical rainfall response to SST fluctuations. Climate Res 78:165–178

    Article  Google Scholar 

  • Parry ML, Rosenzweigb C, Iglesiasc A, Livermored M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Chang 14:53–67

    Article  Google Scholar 

  • Petrie MD, Collins SL, Gutzler DS, Moore DM (2014) Regional trends and local variability in monsoon precipitation in the northern Chihuahuan Desert, USA. J Arid Environ 103:63–70

    Article  Google Scholar 

  • Ren LP, Arkin Smith TM, Shen SSP (2013) Global precipitation trends in 1900–2005 from a reconstruction and coupled model simulations. J Gerontol Ser A Biol Med Sci 118:1679–1689. https://doi.org/10.1002/jgrd.50212

    Article  Google Scholar 

  • Rivard C, Vigneault H (2009) Trend detection in hydrological series: when series are negatively correlated. Hydrol Process 23:2737–2743. https://doi.org/10.1002/hyp.7370

    Article  Google Scholar 

  • Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu, C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P (2007) Assessment of observed changes and responses in natural and managed systems. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. & Hanson, C.E.). Cambridge University Press, Cambridge, pp. 79–131

  • Rosenzweig C, Parry ML (1994) Potential impact of climate change on world food supply. Nature 367:133–138

    Article  Google Scholar 

  • Salman SA, Shahid S, Ismail T, Al-Abadi AM, Wang XJ, Chung ES (2019) Selection of gridded precipitation data for Iraq using compromise programming. Measurement 132:87–98

    Article  Google Scholar 

  • Schneider U, Becke, A, Finger P, Meyer-Christoffer, A, Ziese M (2020) GPCC full data monthly product version 2020 at 0.25°: monthly land-surface precipitation from rain-gauges built on GTS-based and historical data. https://doi.org/10.5676/DWD_GPCC/FD_M_V2020_025

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2014) GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoret Appl Climatol 115: 15–40. https://doi.org/10.1007/s00704-013-0860-x‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Smith I (2004) An assessment of recent trends in Australian rainfall. Aust Meteorol Mag 53:163–173

    Google Scholar 

  • Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu KL (2018) A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev Geophys 56:79–107

    Article  Google Scholar 

  • Tanarhte M, Hadjinicolaou P, Lelieveld J (2012) Intercomparison of temperature and precipitation data sets based on observations in the Mediterranean and the Middle East. J Gerontol Ser A Biol Med Sci 117:D12102. https://doi.org/10.1029/2011JD017293

    Article  Google Scholar 

  • Taschetto AS, England MH (2009) An analysis of late twentieth century trends in Australian rainfall. Int J Climatol 29:791–807. https://doi.org/10.1002/joc.1736

    Article  Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis, I, II. III Nederl Akad Wetensch Proc 53:386–392

    Google Scholar 

  • Thomey ML, Collins SL, Vargas R, Johnson JE, Brown RF, Natvig DO, Friggens MT (2011) Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Glob Change Biol 17:1505–1515

    Article  Google Scholar 

  • Trenberth KE, Fasullo J, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteor Soc 90:311–323

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Climate Res 47:123–138. https://doi.org/10.3354/cr00953

    Article  Google Scholar 

  • Tyrlis E, Lelieveld J, Steil B (2013) The summer circulation over the eastern Mediterranean and the Middle East: influence of the South Asian monsoon. Clim Dyn 40:1103–1123

    Article  Google Scholar 

  • Wehbe Y, Temimi M, Ghebreyesus DT, Milewski A, Norouzi H, Ibrahim E (2018) Consistency of precipitation products over the Arabian Peninsula and interactions with soil moisture and water storage. Hydrol Sci J 63:408–425

    Article  Google Scholar 

  • Willmott CJ, Robeson SM, Matsuura K (2007) Geographic box plots. Phys Geogr 28:331–344

    Article  Google Scholar 

  • Willmott CJ, Rowe CM, Philpot WD (1985) Small-scale climate maps: a sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring. American Cartographer 12:5–16

    Article  Google Scholar 

  • Wu SY (2015) Changing characteristics of precipitation for the contiguous United States. Clim Change 132:677–692

    Article  Google Scholar 

  • Wu Y, Wu SY, Wen J, Xu M, Tan J (2015) Changing characteristics of precipitation in China during 1960–2012. Int J Climatol 36:1387–1402. https://doi.org/10.1002/joc.4432

    Article  Google Scholar 

  • Wang W, Chen Y, Becker S, Liu B (2015) Variance correction prewhitening method for trend detection in autocorrelated data. J Hydrol Eng 20(12):04015033

    Article  Google Scholar 

  • Yue S, Pilon P, Cavadias G (2002a) Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259:254–271

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002b) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B (2003) Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrol Sci J 48:51–63

    Article  Google Scholar 

  • Zhang X, Vincent LA, Hogg WD, Niitsoo A (2000) Temperature and Precipitation Trends in Canada During the 20th Century. Atmos Ocean 38:395–429

    Article  Google Scholar 

  • Zhang X, Zwiers FW (2004) Comment on ‘“Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test”’ by Sheng Yue and Chun Yuan Wang. Water Resour Res 40:W03805. https://doi.org/10.1029/2003WR002073

    Article  Google Scholar 

  • Zhang XB, Aguilar E, Sensoy S, Melkonyan H, Tagiyeva U, Ahmed N, Kutaladze N, Rahimzadeh F, Taghipour A, Hantosh TH, Albert P, Semawi M, Ali MK, Al-Shabibi MHS, Al-Oulan Z, Zatari T, Khelet IA, Hamoud S, Sagir R, Demircan M, Eken M, Adiguzel M, Alexander L, Peterson TC, Wallis T (2005) Trends in Middle East climate extreme indices from 1950 to 2003. J Gerontol Ser A Biol Med Sci 110:D22104. https://doi.org/10.1029/2005jd006181

    Article  Google Scholar 

Download references

Funding

This work was supported by the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia, through Research Group no RG-1441–344.

Author information

Authors and Affiliations

Authors

Contributions

Authors contributed equally.

Corresponding author

Correspondence to Ali S. Alghamdi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaaran, N.A., Alghamdi, A.S. Precipitation climatology and spatiotemporal trends over the Arabian Peninsula. Theor Appl Climatol 147, 1133–1149 (2022). https://doi.org/10.1007/s00704-021-03878-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03878-5

Keywords

Profiles

  1. Ali S. Alghamdi