Skip to main content

Advertisement

Log in

Spatio-temporal rainfall variability of equatorial small island: case study Bintan Island, Indonesia

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The water resources of Bintan Island depend much on rainfall since the impervious granitic basement that bears a low water storage capacity dominates the geology of Bintan Island. Water demand in Bintan is increasing due to both population and economic growth. This paper aims to determine the spatial and temporal rainfall variability over Bintan Island using the daily corrected-CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) version two (v2.0) dataset to a ground-based observation dataset (Kijang station) using quantile-base bias correction for period 1 January 1981–31 August 2018. For the analysis process, we used monthly corrected-CHIRPS, NINO 3.4 anomaly index, the DMI (dipole mode index), zonal and meridional wind, and specific humidity from January 1981 to December 2017. Semi-annual, annual, and interannual variations influence monthly rainfall amounts over the island. Two peaks representing equatorial and monsoonal patterns characterize the temporal variability of rainfall. Spatially, the southern part of the island receives more rainfall than the northern part especially in MAM and SON related to the more convergence of moisture. The effects of interannual variation, ENSO (El Niño-Southern Oscillation) and IOD (Indian Ocean dipole), vary with season. ENSO contributes more to rainfall variability than IOD during the period of study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aldrian E, Susanto RD (2003) Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int J Climatol 23(12):1435–1452

  • Aldrian E, Dümenil Gates L, Widodo FH (2007) Seasonal variability of Indonesian rainfall in ECHAM4 simulations and in the reanalyses: The role of ENSO. Theor Appl Climatol 87(1):41–59. https://doi.org/10.1007/s00704-006-0218-8

    Article  Google Scholar 

  • Alsepan G, Minobe S (2020) Relations between interannual variability of regional-scale Indonesian precipitation and large-scale climate modes during 1960–2007. J Clim 33(12):5271–5291. https://doi.org/10.1175/jcli-d-19-0811.1

    Article  Google Scholar 

  • Amirudin AA, Salimun E, Tangang F, Juneng L, Zuhairi M (2020) Differential influences of teleconnections from the Indian and Pacific Oceans on rainfall variability in Southeast Asia. Atmosphere 11(9):886. https://doi.org/10.3390/atmos11090886

    Article  Google Scholar 

  • Anagnostopoulou C, Tolika K (2012) Extreme precipitation in Europe: statistical threshold selection based on climatological criteria. Theor Appl Climatol 107(3–4):479–489. https://doi.org/10.1007/s00704-011-0487-8

    Article  Google Scholar 

  • As-syakur AR, Adnyana IWS, Mahendra MS, Arthana IW, Merit IN, Kasa IW, Ekayanti NW, Nuarsa IW, Sunarta IN (2014) Observation of spatial patterns on the rainfall response to ENSO and IOD over Indonesia using TRMM Multisatellite Precipitation Analysis (TMPA). Int J Climatol 34(15):3825–3839. https://doi.org/10.1002/joc.3939

    Article  Google Scholar 

  • As-syakur AR, Tanaka T, Osawa T, Mahendra MS (2013) Indonesian rainfall variability observation using TRMM multi-satellite data. Int J Remote Sens 34(21):7723–7738. https://doi.org/10.1080/01431161.2013.826837

    Article  Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28(23):4499–4502. https://doi.org/10.1029/2001GL013294

    Article  Google Scholar 

  • Behera SK, Luo J-J, Yamagata T (2008) Unusual IOD event of 2007. Geophys Res Lett 35(14). https://doi.org/10.1029/2008GL034122

  • Boer R, Faqih M (2004) Global climate forcing factors and rainfall variability in west java: case study in bandung district. J Agromet 18(2):1–12

    Article  Google Scholar 

  • BPS (2017) Kabupaten Bintan dalam Angka 2017. Badan Pusat Statistik Kabupaten Bintan

  • Cazelles B, Chavez M, Berteaux D, Ménard F, Vik JO, Jenouvrier S, Stenseth NC (2008) Wavelet analysis of ecological time series. Oecologia 156(2):287–304

  • Chang CP, Zhuo W, John M, Ching-Hwang L (2005) Annual cycle of Southeast Asia — maritime continent rainfall and the asymmetric. J Clim 18:287–301

    Article  Google Scholar 

  • Chang CP, Li T, Yang S (2020) Seasonal prediction of boreal winter rainfall over the Western Maritime Continent during ENSO. J Meteorol Res 34(2):294–303. https://doi.org/10.1007/s13351-020-9181-z

    Article  Google Scholar 

  • D’Arrigo R, Smerdon JE (2008) Tropical climate influences on drought variability over Java, Indonesia. Geophys Res Lett 35(5). https://doi.org/10.1029/2007GL032589

  • Dang-Quang N, Renwick J, McGregor J (2016) On the presence of tropical vortices over the Southeast Asian Sea-Maritime continent region. J Clim 29(13):4793–4800. https://doi.org/10.1175/JCLI-D-14-00468.1

    Article  Google Scholar 

  • Davidson N, Mcbride J, McAvaney B (1984) Divergent circulations during the onset of the 1978 79 Australian Monsoon. Mon Weather Rev 112:1684–1696. https://doi.org/10.1175/1520-0493(1984)112<1684:DCDTOO>2.0.CO;2

    Article  Google Scholar 

  • Dinku T, Funk C, Peterson P, Maidment R, Tadesse T, Gadain H, Ceccato P (2018) Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q J Roy Meteor Soc 144(S1):292–312. https://doi.org/10.1002/qj.3244

    Article  Google Scholar 

  • Falkland A (2002) Tropical island hydrology and water resources: current knowledge and future needs. Second International Colloquium on Hydrology and Water Management in the Humid Tropics, 237–298

  • Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S et al (2015) The climate hazards infrared precipitation with stations a new environmental record for monitoring extremes. Scientific Data, 2. https://doi.org/10.1038/sdata.2015.66

  • Hamada J-I, Yamanaka MD, Matsumoto J, Fukao S, Winarso PA, Sribimawati T (2002) Spatial and temporal variations of the rainy season over Indonesia and their link to ENSO. J Meteorol Soc Jpn 80(2):285–310. https://doi.org/10.2151/jmsj.80.285

    Article  Google Scholar 

  • Hassim MEE, Timbal B (2019) Observed rainfall trends over Singapore and the maritime continent from the perspective of regional-scale weather regimes. J Appl Meteorol Climatol 58(2):365–384. https://doi.org/10.1175/JAMC-D-18-0136.1

  • Hendon HH (2003) Indonesian rainfall variability: impacts of ENSO and local air sea interaction. J Clim 16(11):1775–1790. https://doi.org/10.1175/1520-0442(2003)016<1775:IRVIOE>2.0.CO;2

    Article  Google Scholar 

  • Hendrawan IG, Asai K, Triwahyuni A, Lestari DV (2019) The interanual rainfall variability in Indonesia corresponding to El Niño Southern Oscillation and Indian Ocean Dipole. Acta Oceanol Sin 38(7):57–66. https://doi.org/10.1007/s13131-019-1457-1

    Article  Google Scholar 

  • Herring SC, Hoell A, Hoerling MP, Kossin JP, Schreck CJ, Stott PA (2016) Explaining extreme events of 2015 from a climate perspective. Bull Am Meteorol Soc 97(12):S1–S145. https://doi.org/10.1175/bams-explainingextremeevents2015.1

    Article  Google Scholar 

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10(8):1769–1786. https://doi.org/10.1175/1520-0442(1997)010<1769:ENOLNA>2.0.CO;2

    Article  Google Scholar 

  • Inomata H, Takeuchi k, Fukami k (2011) Development of a statistical bias correction method for daily precipitation data of GCM20. J Japan Soc Civ Eng, Ser B1 (Hydraulic Engineering) 67(4):I_247–I_252

  • Inomata H, Takeuchi K, Fukami K (2012) Development of a statistical bias correction method for daily precipitation data of GCM20. J Japan Soc Civ Eng, Ser B1 (Hydraulic Engineering) 67. https://doi.org/10.2208/jscejhe.67.I_247

  • Iskandar I, Mardiansyah W, Lestari DO, Masumoto Y (2020) What did determine the warming trend in the Indonesian sea? Prog Earth Planet Sci 7(1)

  • Jiang L, Li T (2018) Why rainfall response to El Niño over Maritime Continent is weaker and non-uniform in boreal winter than in boreal summer. Clim Dyn 51(4):1465–1483. https://doi.org/10.1007/s00382-017-3965-6

    Article  Google Scholar 

  • Konecky B, Russell J, Bijaksana S (2016) Glacial aridity in central Indonesia coeval with intensified monsoon circulation. Earth Planet Sci Lett 437:15–24. https://doi.org/10.1016/j.epsl.2015.12.037

    Article  Google Scholar 

  • Kusnama, Sutisna, K., Amin, T. C., Koesumadinata, S., Sukardi, & Hermanto, B. (1994). Peta geologi lembar Tanjung Pinang, Sumatera, Skala 1:250.000. Pusat Penelitian Dan Pengembangan Geologi, Bandung.

  • Kusuma DW, Murdimanto A, Aden LY, Sukresno B, Jatisworo D, Hanintyo R (2017) Sea surface temperature dynamics in Indonesia. IOP Conf Ser 98(1):012038. https://doi.org/10.1088/1755-1315/98/1/012038

    Article  Google Scholar 

  • Lestari DO, Sutriyono E, Sabaruddin, Iskandar I (2018) Respective influences of Indian Ocean dipole and El Niño- southern oscillation on Indonesian precipitation. Datasets Methods 50(3):257–272. https://doi.org/10.5614/j.math.fund.sci.2018.50.3.3

  • Lee S-Y, McBride JL (2016) The progression of the boreal winter monsoon through the western maritime continent as differentiated by ENSO phase. Adv Geosci 42:51–60

  • Lubis, M. Z., Anurogo, W., Kausarian, H., Surya, G., & Choanji, T. (2017). Sea surface temperature and wind velocity in Batam Waters its relation to Indian Ocean Dipole (IOD). J Geosci Eng Environ Technol, 2(4), 255. https://doi.org/10.24273/jgeet.2017.2.4.778

  • Mardiansyah, W., Setiabudidaya, D., Khakim, M. Y. N., Yustian, I., Dahlan, Z., & Iskandar, I. (2018). On the influence of Enso and IOD on rainfall variability over the Musi Basin, South Sumatra. Sci Technol Indonesia, 3(4), 157. https://doi.org/10.26554/sti.2018.3.4.157-163

  • Nur’utami, M. N., & Hidayat, R. (2016). Influences of IOD and ENSO to Indonesian rainfall variability: role of atmosphere-ocean interaction in the Indo-pacific sector. Procedia Environ Sci, 33, 196–203. https://doi.org/10.1016/j.proenv.2016.03.070

  • Qian JH (2020) Multi-scale climate processes and rainfall variability in Sumatra and Malay Peninsula associated with ENSO in boreal fall and winter. Int J Climatol 40(9):4171–4188. https://doi.org/10.1002/joc.6450

    Article  Google Scholar 

  • Saji NH, Yamagata T (2003) Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS OBservations. J Clim 16(16):2735–2751. https://doi.org/10.1175/1520-0442(2003)016<2735:SOSASW>2.0.CO;2

    Article  Google Scholar 

  • Santoso D (2015) Kajian Daya Dukung Air di Pulau Bintan, Provinsi Kepulauan Riau. Jurnal Sains & Teknologi Lingkungan, 7, 1–17. 10.20885/jstl.vol7.iss1.art1

  • Setiawan AM, Lee W-S, Rhee J (2017) Spatio-temporal characteristics of Indonesian drought related to El Niño events and its predictability using the multi-model ensemble. Int J Climatol 37(13):4700–4719. https://doi.org/10.1002/joc.5117

    Article  Google Scholar 

  • Supari, Tangang F, Salimun E, Aldrian E, Sopaheluwakan A, Juneng L (2018) ENSO modulation of seasonal rainfall and extremes in Indonesia. Clim Dyn, 51(7–8), 2559–2580. https://doi.org/10.1007/s00382-017-4028-8

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78. https://doi.org/10.1175/1520-0477(1998)079%3C0061:APGTWA%3E2.0.CO;2

  • Trenberth KE, Caron JM, Stepaniak DP, Worley S (2002) Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. J Geophys Res-Atmos, 107(D8), AAC 5-1-AAC 5-17. 10.1029/2000JD000298

  • Ummenhofer CC, England MH, McIntosh PC, Meyers GA, Pook MJ, Risbey JS, Gupta AS, Taschetto AS (2009) What causes southeast Australia’s worst droughts? Geophys Res Lett 36(4). https://doi.org/10.1029/2008GL036801

  • Wilks DS (2011) Statistical Methods in the Atmospheric Sciences, 3rd edn. Academic Press

  • Wu H, Adler RF, Hong Y, Tian Y, Policelli F (2012) Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J Hydrometeorol 13(4):1268–1284. https://doi.org/10.1175/JHM-D-11-087.1

    Article  Google Scholar 

  • Wu P, Arbain AA, Mori S, Hamada J, Hattori M, Syamsudin F, Yamanaka MD (2013) The effects of an active phase of the Madden-Julian oscillation on the extreme precipitation event over Western Java Island in January 2013. SOLA 9:79–83. https://doi.org/10.2151/sola.2013-018

    Article  Google Scholar 

  • Xavier P, Lim SY, Bin Abdullah MFA, Bala M, Chenoli SN, Handayani AS et al (2020) Seasonal dependence of cold surges and their interaction with the madden–julian oscillation over Southeast Asia. J Clim 33(6):2467–2482. https://doi.org/10.1175/JCLI-D-19-0048.1

    Article  Google Scholar 

  • Yang S, Zhang T, Li Z, Dong S (2019) Climate variability over the Maritime Continent and its role in global climate variation: a review. J Meteorol Res 33(6):993–1015. https://doi.org/10.1007/s13351-019-9025-x

    Article  Google Scholar 

  • Yuan Y, Yan HM (2013) Different types of La Niña events and different responses of the tropical atmosphere. Chin Sci Bull 58(3):406–415

  • Zhou T-J (2005) Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J Geophys Res 110(D8)

Download references

Acknowledgments

We wish to thank the head of the Research Center of Oceanographic - LIPI with staff, the coordinator of the DDRF - Coremap CTI LIPI 2018–2019 with staff who have provided fund and facilities in carrying out this research. We would also to thank the head of the Research Center of Geotechnology LIPI for approving the research proposal, technicians who had collaborated in fieldwork. The second and the third authors are also partly supported by P3MI ITB and The Newton Fund - Dikti. We would also to thank the staff of the BAPPEDA of Riau Islands Province, BAPPEDA of Bintan Regency and Tanjungpinang City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Narulita.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narulita, I., Fajary, F.R., Syahputra, M.R. et al. Spatio-temporal rainfall variability of equatorial small island: case study Bintan Island, Indonesia. Theor Appl Climatol 144, 625–641 (2021). https://doi.org/10.1007/s00704-021-03527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03527-x

Navigation