Abstract
The purpose of this paper is to model numerically the dynamics of CO2 and 222Rn in cave atmospheres, particularly in the noteworthy Cave of Altamira (Spain). We aim to get a better understanding of the nature of these dynamics and their couplings with climatic controls, more specifically the soil water content, which role in the said dynamics poses some questions. For the first time, we apply the global modeling technique in the field of cave microclimate and atmospheric composition. The global modeling technique is a methodology based on the theory of nonlinear systems and designed to extract mathematical models directly from observational time series. We were able to extract four global models from our data. These models represent a step forward from the existent conceptual ones. They also show that CO2 and 222Rn dynamics can be approximated by low-dimensional, deterministic systems, which can be chaotic or, at least, close to chaos; this has decisive methodological consequences for future research. Moreover, the global modeling technique was used for the first time in a non-autonomous formulation; this enabled the possibility of studying the influence of the external forcing (soil water content) on the gas concentration in different scenarios.
This is a preview of subscription content, access via your institution.












References
Aguirre LA, Letellier C (2009) Modeling nonlinear dynamics and chaos: a review Mathematical Problems in Engineering 2009
Badino G (2009) The legend of carbon dioxide heaviness. J Cave Karst Stud 71:100–107
Baldini JU, McDermott F, Hoffmann DL, Richards DA, Clipson N (2008) Very high-frequency and seasonal cave atmosphere P CO2 variability: implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth Planet Sci Lett 272:118–129
Bergé P, Pomeau Y, Vidal C (1987) Order within chaos
Bezruchko BP, Smirnov DA (2001) Constructing nonautonomous differential equations from experimental time series. Phys Rev E 63:016207
Bourges F, Genthon P, Mangin A, d’Hulst D (2006) Microclimates of l’Aven d’Orgnac and other French limestone caves (Chauvet, Esparros, Marsoulas). Int J Climatol 26:1651–1670
Bourges F, Genthon P, Genty D, Lorblanchet M, Mauduit E, D’Hulst D (2014) Conservation of prehistoric caves and stability of their inner climate: lessons from Chauvet and other French caves. Sci Total Environ 493:79–91
Buecher RH (1999) Microclimate study of Kartchner caverns, Arizona. J Cave Karst Stud 61:108–120
Choppy J (1986) Phénomènes karstiques: Processus climatiques. Dynamique de l’air. Spéléo-Club de Paris
Cigna AA (2005) Radon in caves. Int J Speleol 34:1–18
Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610
Crouzeix C, Le Mouël J-L, Perrier F, Richon P, Morat P (2003) Long-term thermal evolution and effect of low power heating in an underground quarry. Compt Rendus Geosci 335:345–354
Cuevas González J (2013) Caracterización microclimática e hidrogeoquímica de la Cueva del Canelobre (Busot, Alicante)
Cuezva S (2008) Dinámica microambiental de un medio kárstico somero (Cueva de Altamira, Cantabria): microclima, geomicrobiología y mecanismos de interacción cavidad-exterior. Ph. D. thesis, Universidad Complutense de Madrid
Cuezva S, Fernandez-Cortes A, Benavente D, Serrano-Ortiz P, Kowalski A, Sanchez-Moral S (2011) Short-term CO 2 (g) exchange between a shallow karstic cavity and the external atmosphere during summer: role of the surface soil layer. Atmos Environ 45:1418–1427
De Freitas C, Littlejohn R (1987) Cave climate: assessment of heat and moisture exchange. Int J Climatol 7:553–569
Dorigo W, Xaver A, Vreugdenhil M, Gruber A, Hegyiova A, Sanchis-Dufau A, Zamojski D, Cordes C, Wagner W, Drusch M (2013) Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J 12(3). https://doi.org/10.2136/vzj2012.0097
Fernández P, Gutierrez I, Quindós L, Soto J, Villar E (1986) Natural ventilation of the paintings room in the Altamira cave. Nature 321:586–588
Fernandez-Cortes A, Sanchez-Moral S, Cuezva S, Cañaveras JC, Abella R (2009) Annual and transient signatures of gas exchange and transport in the Castañar de Ibor cave (Spain). Int J Speleol 38:6
Fernandez-Cortes A, Cuezva S, Sanchez-Moral S, Cañaveras JC, Porca E, Jurado V, Martin-Sanchez PM, Saiz-Jimenez C (2011a) Detection of human-induced environmental disturbances in a show cave. Environ Sci Pollut Res 18:1037–1045
Fernandez-Cortes A, Sanchez-Moral S, Cuezva S, Benavente D, Abella R (2011b) Characterization of trace gases’ fluctuations on a ‘low energy’ cave (Castañar de Íbor, Spain) using techniques of entropy of curves. Int J Climatol 31:127–143
Fernandez-Cortes A, Benavente D, Cuezva S, Cañaveras JC, Alvarez-Gallego M, Garcia-Anton E, Soler V, Sanchez-Moral S (2013) Effect of water vapour condensation on the radon content in subsurface air in a hypogeal inactive-volcanic environment in Galdar cave, Spain. Atmos Environ 75:15–23
Freitas US, Letellier C, Aguirre LA (2009) Failure in distinguishing colored noise from chaos using the “noise titration” technique. Phys Rev E 79:035201
Frisia S, Fairchild IJ, Fohlmeister J, Miorandi R, Spötl C, Borsato A (2011) Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves. Geochim Cosmochim Acta 75:380–400
García-Antón E, Cuezva S, Fernandez-Cortes Á, Benavente D, Sanchez-Moral S (2014a) Main drivers of diffusive and advective processes of CO2-gas exchange between a shallow vadose zone and the atmosphere. Int J Greenh Gas Control 21:113–129
García-Antón E, Cuezva S, Jurado V, Porca E, Miller AZ, Fernandez-Cortes A, Saiz-Jimenez C, Sánchez-Moral S (2014b) Combining stable isotope (δ13C) of trace gases and aerobiological data to monitor the entry and dispersion of microorganisms in caves. Environ Sci Pollut Res 21:473–484
Garcia-Antón E, Cuezva S, Fernandez-Cortes A, Alvarez-Gallego M, Pla C, Benavente D, Cañaveras JC, Sanchez-Moral S (2017) Abiotic and seasonal control of soil-produced CO2 efflux in karstic ecosystems located in Oceanic and Mediterranean climates. Atmos Environ 164:31–49
Gázquez F, Quindós-Poncela L, Sainz-Fernández C, Fernández-Villar A, Fuente-Merino I, Celaya-González S (2016) Spatiotemporal distribution of delta13C-CO2 in a shallow cave and its potential use as indicator of anthropic pressure. J Environ Manag 180:421–432
Gilmore R, Lefranc M (2002) Topology analysis of chaos. Wiley VCH Verlagsgesellschaft
Gouesbet G, Letellier C (1994) Global vector-field reconstruction by using a multivariate polynomial L2 approximation on nets. Phys Rev E 49:4955
Gregoric A, Zidansek A, Vaupotic J (2011) Dependence of radon levels in Postojna Cave on outside air temperature. Nat Hazards Earth Syst Sci 11:1523–1528
Gutiérrez Díaz-Velarde MI (1985) Influencia de la presencia de visitantes en las características naturales de la Sala de Pinturas de Altamira. Estudio de la ventilación natural. Universidad de Cantabria
Hamada Y, Tanaka T (2001) Dynamics of carbon dioxide in soil profiles based on long-term field observation. Hydrol Process 15:1829–1845
Hoyos M, Soler V, Cañaveras J, Sánchez-Moral S, Sanz-Rubio E (1998) Microclimatic characterization of a karstic cave: human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain). Environ Geol 33:231–242
Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim Cosmochim Acta 13:322–334
Kennel MB, Brown R, Abarbanel HD (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A 45:3403
Kowalczk AJ, Froelich PN (2010) Cave air ventilation and CO 2 outgassing by radon-222 modeling: how fast do caves breathe? Earth Planet Sci Lett 289:209–219
Kowalski AS, Serrano-Ortiz P, Janssens IA, Sánchez-Moral S, Cuezva S, Domingo F, Were A, Alados-Arboledas L (2008) Can flux tower research neglect geochemical CO2 exchange? Agric For Meteorol 148:1045–1054. https://doi.org/10.1016/j.agrformet.2008.02.004
Lejri D, Malasoma J-M (2007) Reconstruction phénoménologique de systèmes complexes forcés. Actes Rencontres Non-Linéaire 2007:104–110
Letellier C (2013) Chaos in nature vol 81. World Scientific
Letellier C, Aguirre LA (2005) Graphical interpretation of observability in terms of feedback circuits. Phys Rev E 72:056202
Letellier C, Moroz I, Gilmore R (2008) Comparison of tests for embeddings. Phys Rev E 78:026203
Letellier C, Aguirre LA, Freitas U (2009) Frequently asked questions about global modeling. Chaos Interdiscip J Nonlinear Sci 19:023103
Liu Z, Dreybrodt W, Wang H (2010) A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth Sci Rev 99:162–172. https://doi.org/10.1016/j.earscirev.2010.03.001
Loisy C, Cerepi A (2012) Radon-222 as a tracer of water–air dynamics in the unsaturated zone of a geological carbonate formation: Example of an underground quarry (Oligocene Aquitain limestone, France). Chem Geol 296:39–49
Mangiarotti S (2015) Low dimensional chaotic models for the plague epidemic in Bombay (1896–1911). Chaos, Solitons Fractals 81:184–196
Mangiarotti S, Huc M (2019) Can the original equations of a dynamical system be retrieved from observational time series? Chaos Interdiscip J Nonlinear Sci 29:023133
Mangiarotti S, Coudret R, Drapeau L, Jarlan L (2012) Polynomial search and global modeling: two algorithms for modeling chaos. Phys Rev E 86:046205
Mangiarotti S, Drapeau L, Letellier C (2014) Two chaotic global models for cereal crops cycles observed from satellite in northern Morocco. Chaos Interdiscip J Nonlinear Sci 24:023130
Mangiarotti S, Le Jean F, Huc M, Letellier C (2016a) Global modeling of aggregated and associated chaotic dynamics. Chaos Solitons Fractals 83:82–96
Mangiarotti S, Peyre M, Huc M (2016b) A chaotic model for the epidemic of Ebola virus disease in West Africa (2013–2016). Chaos Interdiscip J Nonlinear Sci 26:113112
Mangiarotti S, Le Jean F, Chassan M, Drapeau L, Huc M (2018a) Generalized polynomial modelling, version 1.1. Comprehensive R Archive Network https://CRAN.R-project.org/package=GPoM. Acceesed 7 Mar 2019
Mangiarotti S, Sendiña-Nadal I, Letellier C (2018b) Using global modeling to unveil hidden couplings in small network motifs. Chaos: An Interdisciplinary Journal of Nonlinear Science 28(12):123110
Mangiarotti S, Zhang Y, Leblanc M (2019) Chaos theory applied to the modeling of karst springs: first results from univariate time series. Hydrogeol J 27(6):2027–2043
Martin JB, Brown A, Ezell J (2013) Do carbonate karst terrains affect the global carbon cycle? Acta Carsologica 42(2–3). https://doi.org/10.3986/ac.v42i2-3.660
Mattey DP, Fairchild IJ, Atkinson TC, Latin J-P, Ainsworth M, Durell R (2010) Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar. Geol Soc Lond, Spec Publ 336:323–344
Ménard O, Letellier C, Maquet J, Le Sceller L, Gouesbet G (2000) Analysis of a non synchronized sinusoidally driven dynamical system. Int J Bifurc Chaos 10(7):1759–1772
Perrier F, Morat P, Le Mouël J-L (2001) Pressure induced temperature variations in an underground quarry. Earth Planet Sci Lett 191:145–156
Perrier F, Richon P, Crouzeix C, Morat P, Le Mouël J-L (2004) Radon-222 signatures of natural ventilation regimes in an underground quarry. J Environ Radioact 71:17–32
Peyraube N, Lastennet R, Denis A, Malaurent P, Houillon N, Villanueva JD (2017a) Determination and quantification of major climatic parameters influencing the CO2 of Lascaux Cave. Theor Appl Climatol:1–11. https://doi.org/10.1007/s00704-017-2255-x
Peyraube N, Lastennet R, Villanueva JD, Houillon N, Malaurent P, Denis A (2017b) Effect of diurnal and seasonal temperature variation on Cussac cave ventilation using CO2 assessment. Theor Appl Climatol 129:1045–1058
Pla C, Galiana-Merino JJ, Cuezva S, Fernandez-Cortes Á, Cañaveras JC, Benavente D (2016) Assessment of CO2 dynamics in subsurface atmospheres using the wavelet approach: from cavity–atmosphere exchange to anthropogenic impacts in Rull cave (Vall d0Ebo, Spain). Environ Earth Sci 75. https://doi.org/10.1007/s12665-016-5325-y
Pla C, Cuezva S, Martínez-Martínez J, Fernández-Cortes A, García-Antón E, Fusi N, Crosta GB, Cuevas-González J, Cañaveras JC, Sánchez-Moral S, Benavente D (2017) Role of soil pore structure in water infiltration and CO2 exchange between the atmosphere and underground air in the vadose zone: a combined laboratory and field approach. Catena 149:402–416
Quindos L, Bonet A, Diaz-Caneja N, Fernandez P, Gutierrez I, Solana J, Soto J, Villar E (1987) Study of the environmental variables affecting the natural preservation of the Altamira Cave paintings located at Santillana del Mar, Spain. Atmos Environ (1967) 21:551–560
Sainz C, Rábago D, Celaya S, Fernández E, Quindós J, Quindós L, Fernández A, Fuente I, Arteche JL, Quindós LS (2018) Continuous monitoring of radon gas as a tool to understand air dynamics in the cave of Altamira (Cantabria, Spain). Sci Total Environ 624:416–423
Saiz-Jimenez C, Cuezva S, Jurado V, Fernandez-Cortes A, Porca E, Benavente D, Cañaveras JC, Sanchez-Moral S (2011) Paleolithic art in peril: policy and science collide at Altamira Cave. Science 334:42–43
Sanchez-Moral S, Soler V, Cañaveras J, Sanz-Rubio E, Van Grieken R, Gysels K (1999) Inorganic deterioration affecting the Altamira Cave, N Spain: quantitative approach to wall-corrosion (solutional etching) processes induced by visitors. Sci Total Environ 243:67–84
Sauer T, Yorke JA, Casdagli M (1991) Embedology. J Stat Phys 65:579–616
Savoy L, Surbeck H, Hunkeler D (2011) Radon and CO2 as natural tracers to investigate the recharge dynamics of karst aquifers. J Hydrol 406:148–157
Spötl C, Fairchild IJ, Tooth AF (2005) Cave air control on dripwater geochemistry, Obir Caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochim Cosmochim Acta 69:2451–2468
Tans PP, Fung IY, Takahashi T (1990) Observational contrains on the global atmospheric CO2 budget. Science 247:1431–1438. https://doi.org/10.1126/science.247.4949.1431
Whitney H (1936) Differentiable manifolds. Ann Math 37:645–680
Wigley T, Brown M (1976a) Cave meteorology the science of speleology. Academic Press, New York, pp 329–344
Wigley T, Brown M (1976b) The physics of caves. Sci Speleol 3:329–347
Wilkening MH, Watkins DE (1976) Air exchange and 222Rn concentrations in the Carlsbad Caverns. Health Phys 31:139–145
Acknowledgments
The authors would like to warmly thank Pierre Genthon and François Bourges for stimulating discussions.
Funding
This research was supported by the Spanish Government (grant numbers RTI2018-099052-B-I00 and PID2019-110603RB-I00) and the Regional Government of Comunidad Valenciana, Spain (grant number AICO/2020/175). SM received financial support from the French programs Les Enveloppes Fluides et l’Environnement (CNRS-INSU) and Programme National de Télédétection Spatiale (CNRS). A post-doctoral research fellowship was awarded to S. Cuezva by the University of Almería (Hipatia Programme). A research grant for a doctoral stay was awarded to M. Sáez by the University of Alicante.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOCX 24669 kb)
Rights and permissions
About this article
Cite this article
Sáez, M., Mangiarotti, S., Cuezva, S. et al. Global models for 222Rn and CO2 concentrations in the Cave of Altamira. Theor Appl Climatol 143, 603–626 (2021). https://doi.org/10.1007/s00704-020-03440-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00704-020-03440-9