Abstract
Evapotranspiration (ET), which relates to hydrology and the energy cycle process of land surface, is a key link of the water cycle and an important item of expenditure in energy balance. There have been multiple state-of-the-art climate models that were included in Phase 6 of the Coupled Model Intercomparison Project (CMIP6), but the performance in estimating the ET of the models is still unclear. Thus, this study evaluated the global terrestrial ET of CMIP6 models. The performance of the models and CMIP6 ensemble mean was compared with the GLEAM v3.3a dataset, and the uncertainties of the ensemble were evaluated using the signal-to-noise ratio (SNR). The results show that there was no perfect model that could perform optimally in all aspects of the comparison, and the performance of the CMIP6 ensemble was better than that of a single model. MIROC6, CESM2, and EC-Earth3 performed satisfactorily in some aspects, whereas the performance was poor in other aspects. GFDL-ESM4 exhibited a relatively poor performance. Most models and the CMIP6 ensemble overestimated ET, and the estimations of different models varied greatly, but the results of most models showed an increasing trend. The CMIP6 ensemble overestimated ET in most regions of the world and may have smoothened the variation in the model estimations. In high latitudes such as northern parts of North America and Eurasia, results of the CMIP6 ensemble and GLEAM were approximately the same. The uncertainty of the CMIP6 ensemble was generally low and the estimation reliability varied according to the geographical region.




Similar content being viewed by others
Data availability
The GLEAM dataset can be found at a server and obtained through an SFTP. The passwords to it can be obtained from https://www.gleam.eu (Martens, Miralles, Lievens, van der Schalie, de Jeu, Fernández-Prieto, Beck, Dorigo, Verhoest and Verhoest, 2017; Miralles et al. 2011b).
The CMIP6 datasets can be found at https://esgf-node.llnl.gov/search/cmip6/, an open-source online data repository hosted by ESGF(Eyring et al. 2016).
References
Ayers J, Ficklin DL, Stewart IT, Strunk M (2016) Comparison of CMIP3 and CMIP5 projected hydrologic conditions over the Upper Colorado River Basin. Int J Climatol 36(11):3807–3818. https://doi.org/10.1002/joc.4594
Berg A, Sheffield J (2019) Evapotranspiration partitioning in CMIP5 models: uncertainties and future projections. J Clim 32(10):2653–2671. https://doi.org/10.1175/JCLI-D-18-0583.1
Boé J, Terray L (2008) Uncertainties in summer evapotranspiration changes over Europe and implications for regional climate change. Geophys Res Lett 35(5). https://doi.org/10.1029/2007GL032417
Bowen GJ, Cai Z, Fiorella RP, Putman AL (2019) Isotopes in the water cycle: regional- to global-scale patterns and applications. Annu Rev Earth Pl Sc 47(1):453–479. https://doi.org/10.1146/annurev-earth-053018-060220
Cook BI, Smerdon JE, SeagerR CS (2014) Global warming and 21st century drying. Clim Dynam 43(9):2607–2627. https://doi.org/10.1007/s00382-014-2075-y
Cook BI, Mankin JS, Marvel K, Williams AP, Smerdon JE, Anchukaitis KJ (2020) Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth's. Future 8:e2019EF001461. https://doi.org/10.1029/2019EF001461
Curtis PE, Ceppi P, Zappa G (2020) Role of the mean state for the southern hemispheric jet stream response to CO2 forcing in CMIP6 models. Environ Res Lett 15. https://doi.org/10.1088/1748-9326/ab8331
Danabasoglu G, Lamarque JF, Bacmeister J, Bailey DA, DuVivier AK, Edwards J, Emmons LK, Fasullo J, Garcia R, Gettelman A, Hannay C, Holland MM, Large WG, Lauritzen PH, Lawrence DM, Lenaerts JTM, Lindsay K, Lipscomb WH, Mills MJ, Neale R, Oleson KW, Otto-Bliesner B, Phillips AS, Sacks W, Tilmes S, Kampenhout L, Vertenstein M, Bertini A, Dennis J, Deser C, Fischer C, Fox-Kemper B, Kay JE, Kinnison D, Kushner PJ, Larson VE, Long MC, Mickelson S, Moore JK, Nienhouse E, Polvani L, Rasch PJ, Strand WG (2020) Community earth system model version 2 (CESM2). J Adv Model Earth Syst 12(2). https://doi.org/10.1029/2019MS001916
Dembele M, Ceperley N, Zwart SJ, Salvadore E, Mariethoz G, Schaefli B (2020) Potential of satellite and reanalysis evaporation datasets for hydrological modelling under various model calibration strategies. Adv Water Resour 143:103667. https://doi.org/10.1016/j.advwatres.2020.103667
Douville H, Ribes A, Decharme B, Alkama R, Sheffield J (2013) Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration. Nature Clim Change 3:59–62. https://doi.org/10.1038/nclimate1632
Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
Grose MR, Narsey S, Delage F, Dowdy AJ, Bador M, Boschat G, Chung C, Kajtar J, Rauniyar S, Freund M, Lyu K, Rashid HA, Zhang X, Wales S, Trenham C, Holbrook NJ, Cowan T, Alexander LV, Arblaster JM, Power S, Power-Scott B (2020) Insights from CMIP6 for Australia’s future climate. Earth’s. Future 8:e2019EF001469. https://doi.org/10.1029/2019EF001469
Hajima T, Watanabe M, Yamamoto A, Tatebe H, Noguchi MA, Abe M, Ohgaito R, Ito A, Yamazaki D, Okajima H, Ito A, Takata K, Ogochi K, Watanabe S, Kawamiya M (2020) Development of the MIROC-ES2L earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci Model Dev 13:2197–2244. https://doi.org/10.5194/gmd-13-2197-2020
Hu T, Sun Y, Zhang X, Min S, Kim Y (2020) Human influence on the frequency of temperature extremes. Environ Res Lett 15:064014. https://doi.org/10.1088/1748-9326/ab8497
Jian D, Li X, Sun H, Tao H, Jiang T, Su B, Hartmann H (2018) Estimation of actual evapotranspiration by the complementary theory-based advection-aridity model in the Tarim River Basin, China. J Hydrometeorol 19(2):289–303. https://doi.org/10.1175/JHM-D-16-0189.1
Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) A recent decline in the global land evapotranspiration trend is due to limited moisture supply. Nature 467(7318):951–954. https://doi.org/10.1038/nature09396
Kendall M (1975) Rank correlation methods. Griffin, London
Khosa FV, Mateyisi MJ, van der Merwe MR, Feig GT, Engelbrecht FA, Savage MJ (2020) Evaluation of soil moisture from CCAM-CABLE simulation, satellite-based models estimates and satellite observations: a case study of Skukuza and Malopeni flux towers. Hydrol Earth Syst Sci 24(4):1587–1609. https://doi.org/10.5194/hess-24-1587-2020
Kim J, Park SK (2016) Uncertainties in calculating precipitation climatology in East Asia. Hydrol Earth Syst Sci 20(2):651–658. https://doi.org/10.5194/hess-20-651-2016
Kim I, Oh J, Woo S, Kripalani RH (2019) Evaluation of precipitation extremes over the Asian domain: observation and modeling studies. Clim Dyn 52(3–4):1317–1342. https://doi.org/10.1007/s00382-018-4193-4
Laîné A, Nakamura H, Nishii K, Miyasaka T (2014) A diagnostic study of future evaporation changes projected in CMIP5 climate models. Clim Dyn 42(9–10):2745–2761. https://doi.org/10.1007/s00382-014-2087-7
Lian X, Piao S, Huntingford C, Li Y, Zeng Z, Wang X, Ciais P, McVicar TR, Peng S, Ottlé C, Yang H, Yang Y, Zhang Y, Wang T (2018) Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nature Clim Change 8:640–646. https://doi.org/10.1038/s41558-018-0207-9
Liu WB, Wang L, Zhou J, Li YZ, Sun FB, Fu GB, Li XP, Sang YF (2016) A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method. J Hydrol 538:82–95. https://doi.org/10.1016/j.jhydrol.2016.04.006
Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259. https://doi.org/10.2307/1907187
Mariotti A, Zeng N, Yoon J, Artale V, Navarra A, Alpert P, Li LZ (2008) Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Environ Res Lett 3:044001. https://doi.org/10.1088/1748-9326/3/4/044001
Martens B, Miralles DG, Lievens H, van der Schalie R, de Jeu RAM, Fernández-Prieto D, Beck HE, Dorigo WA, Verhoest NEC (2017) GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci Model Dev 10:1903–1925. https://doi.org/10.5194/gmd-10-1903-2017
Mehrotra R, Sharma A, Bari M, Tuteja N, Amirthanathan G (2014) An assessment of CMIP5 multi-model decadal hindcasts over Australia from a hydrological viewpoint. J Hydrol 519:2932–2951. https://doi.org/10.1016/j.jhydrol.2014.07.053
Miao C, Duan Q, Sun Q, Huang Y, Kong D, Yang T, Ye A, Di Z, Gong W (2014) Assessment of CMIP5 climate models and projected temperature changes over northern Eurasia. Environ Res Lett 9(5):55007. https://doi.org/10.1088/1748-9326/9/5/055007
Miralles DG, de Jeu RAM, Gash JH, Holmes TRH, Dolman AJ (2011a) Magnitude and variability of land evaporation and its components at the global scale. Hydrol Earth Syst Sci 15:967–981. https://doi.org/10.5194/hess-15-967-2011
Miralles DG, Holmes TRH, de Jeu RAM, Gash JH, Meesters AGCA, Dolman AJ (2011b) Global land-surface evaporation estimated from satellite-based observations. Hydrol Earth Syst Sci 15:453–469. https://doi.org/10.5194/hess-15-453-2011
Miralles DG, van den Berg MJ, Gash JH, Parinussa RM, de Jeu RAM, Beck HE, Holmes TRH, Jimenez C, Verhoest NEC, Dorigo WA, Teuling AJ, Dolman AJ (2014) El Niño-La Niña cycle and recent trends in continental evaporation. Nature Clim Change 4:122–126. https://doi.org/10.1038/nclimate2068
Miralles DG, Jiménez C, Jung M, Michel D, Ershadi A, McCabe M, Hirschi M, Martens B, Dolman AJ, Fisher JB, Mu Q, Seneviratne SI, Wood EF, Fernández-Prieto D (2016) The WACMOS-ET project - Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol Earth Syst Sci 20(2):823–842. https://doi.org/10.5194/hess-20-823-2016
Mueller B, Seneviratne SI (2014) Systematic land climate and evapotranspiration biases in. CMIP5 simulations Geophys Res Lett 41(1):128–134. https://doi.org/10.1002/2013GL058055
Müller WA, Jungclaus JH, Mauritsen T, Baehr J, Bittner M, Budich R, Bunzel F, Esch M, Ghosh R, Haak H, Ilyina T, Kleine T, Kornblueh L, Li H, Modali K, Notz D, Pohlmann H, Roeckner E, Stemmler I, Tian F, Marotzke J (2018) A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J Adv Model Earth Syst 10(7):1383–1413. https://doi.org/10.1029/2017MS001217
Narsey SY, Brown JR, Colman RA, Delage F, Power SB, Moise AF, Zhang H (2020) Climate change projections for the Australian monsoon from CMIP6 models. Geophys Res Lett 47(13):e2019GL086816. https://doi.org/10.1029/2019GL086816
Niu Z, He H, Zhu G, Ren X, Zhang L, Zhang K, Yu G, Ge R, Li P, Zeng N, Zhu X (2019) An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 was caused by greening and warming. Agric For Meteorol 279:107701. https://doi.org/10.1016/j.agrformet.2019.107701
Oki T, Kanae S (2006) Global hydrological cycles and global water resources. Science 313(5790):1068–1072. https://doi.org/10.1126/science.1128845
Overgaard J, Rosbjerg D, Butts MB (2006) Land-surface modelling in hydrological perspective – a review. Biogeosciences 3:229–241. https://doi.org/10.5194/bg-3-229-2006
Pan S, Pan N, Tian H, Friedlingstein P, Sitch S, Shi H, Arora VK, Haverd V, Jain AK, Kato E, Lienert S, Lombardozzi D, Nabel JEMS, Ottlé C, Poulter B, Zaehle S, Running SW (2020) Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol Earth Syst Sci 24(3):1485–1509. https://doi.org/10.5194/hess-24-1485-2020
Rao X, Lu X, Dong W (2019) Evaluation and projection of extreme precipitation over northern China in CMIP5 models. Atmosphere 10(11):691. https://doi.org/10.3390/atmos10110691
Schwalm CR, Huntinzger DN, Michalak AM, Fisher JB, Kimball JS, Mueller B, Zhang K, Zhang Y (2013) Sensitivity of inferred climate model skill to evaluation decisions: a case study using CMIP5 evapotranspiration. Environ Res Lett 8(2):024028. https://doi.org/10.1088/1748-9326/8/2/024028
Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 324(63):1379–1389. https://doi.org/10.1080/01621459.1968.10480934
Seo K, Waliser DE, Tian B, Famiglietti JS, Syed TH (2009) Evaluation of global land-to-ocean freshwater discharge and evapotranspiration using space-based observations. J Hydrol 373:508–515. https://doi.org/10.1016/j.jhydrol.2009.05.014
Singh V, Jain SK, Singh PK (2019) Inter-comparisons and applicability of CMIP5 GCMs, RCMs, and statistically downscaled NEX-GDDP-based precipitation in India. Sci Total Environ 697:134163. https://doi.org/10.1016/j.scitotenv.2019.134163
Sriwongsitanon N, Suwawong T, Thianpopirug S, Williams J, Jia L, Bastiaanssen W (2020) Validation of seven global remotely sensed ET products across Thailand using water balance measurements and land use classifications. J Hydrol-Reg Stud 30:100709. https://doi.org/10.1016/j.ejrh.2020.100709
Swart NC, Cole JNS, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Anstey J, Arora V, Christian JR, Hanna S, Jiao Y, Lee WG, Majaess F, Saenko OA, Seiler C, Seinen C, Shao A, Sigmond M, Solheim L, von Salzen K, Yang D, Winter B (2019) The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci Model Dev 12(11):4823–4873. https://doi.org/10.5194/gmd-12-4823-2019
Tam BY, Szeto K, Bonsal B, Flato G, Cannon AJ, Rong R (2019) CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index. Can Water Resour J 44(1):90–107. https://doi.org/10.1080/07011784.2018.1537812
Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192
Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
Trenberth KE, Fasullo JT, Kiehl J (2009) Earth's global energy budget. Bull Amer Meteor Soc 90(3):311–324. https://doi.org/10.1175/2008BAMS2634.1
Wu T, Lu Y, Fang Y, Xin X, Li L (2019) The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci Model Dev 12:1573–1600. https://doi.org/10.5194/gmd-12-1573-2019
Xing W, Wang W, Shao Q, Peng S, Yu Z, Yong B, Taylor J (2014) Changes in reference evapotranspiration in the Haihe River Basin: present observations and future projections from climatic variables through a multi-model ensemble. Glob Planet Change 115:1–15. https://doi.org/10.1016/j.gloplacha.2014.01.004
Yang J, Wang Z, Huang H (2019) Intercomparison of surface energy partitioning in CMIP5 simulations. Atmosphere 10(10):602. https://doi.org/10.3390/atmos10100602
Zhan S, Song C, Wang J, Sheng Y, Quan J (2019) A global assessment of terrestrial evapotranspiration increase due to surface water area change. Earth’s Future 7(3):266–282. https://doi.org/10.1029/2018EF001066
Zhang K, Kimball JS, Running SW (2016a) Review of remote sensing-based actual evapotranspiration estimation. Wiley Interdiscip Rev Water 3(6):834–853. https://doi.org/10.1002/wat2.1168
Zhang Y, Peña-Arancibia JL, McVicar TR, Chiew FHS, Vaze J, Liu C, Lu X, Zheng H, Wang Y, Liu YY, Miralles DG, Pan M (2016b) Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci Rep 6(1):19124. https://doi.org/10.1038/srep19124
Acknowledgments
The datasets used in this study were downloaded from different data repositories. The Global Land Evaporation Amsterdam Model’s (GLEAM) evapotranspiration data are from the GLEAM v3.3 database. We acknowledge the World Climate Research Program, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF. We would like to thank Editage (www.editage.cn) for English language editing. We sincerely appreciate the anonymous reviewers’ helpful comments and the editor’s efforts in improving this manuscript.
Funding
This research was funded by the National Key R&D Program of China [grant number 2017YFA0603702]; the National Natural Science Foundation of China [grant number 41701023].
Author information
Authors and Affiliations
Contributions
All authors have read and agreed to the published version of the manuscript.
Wang Zhizhen: investigation, methodology, formal analysis, data curation, writing-original draft, Visualization.
Zhan Chesheng: conceptualization, writing-review and editing, supervision, project administration, funding acquisition.
Ning Like: conceptualization, methodology, validation, investigation, resources, writing-review, and editing.
Guo Hai: visualization.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest.
Code availability
Not applicable.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, Z., Zhan, C., Ning, L. et al. Evaluation of global terrestrial evapotranspiration in CMIP6 models. Theor Appl Climatol 143, 521–531 (2021). https://doi.org/10.1007/s00704-020-03437-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00704-020-03437-4


