Spatial interpolation of urban air temperatures using satellite-derived predictors

Abstract

Air temperatures in urban environments are usually obtained from sparse weather stations that provide limited information with regard to spatial patterns. Effective methods that predict air temperatures (Tair) in urban areas are based on statistical models which utilize remotely sensed and geographic data. This work aims to compute Tair predictions for diurnal and nocturnal time intervals using predictive models that do not exploit information on Land Surface Temperatures. The models are developed based on explanatory variables that describe the urban morphology, land cover and terrain, aggregated at 100 m × 100 m resolution, combined with in situ Tair measurements from urban meteorological stations. The case study is the urban and per-urban area of Heraklion, Greece, where a dense meteorological station network is available since 2016. Moran’s eigenvector filtering and an autoregressive moving average residual specification are implemented to account for spatial and temporal correlations. The statistical models display satisfactory predictive performance, with mean annual Mean Absolute Error (MAE) equal to 0.36 °C, 0.34 °C, 0.42 °C and 0.54 °C, for 11:00–12:00, 14:00–15:00, 22:00–23:00 and 02:00–03:00 (UTC + 2), respectively. The minimum (maximum) MAE for the estimated datasets is 0.22 °C (0.81 °C). The mean annual MAE for all Tair interpolations is 0.42 °C, the mean annual Root Mean Square Error (RMSE) is 0.49 °C and the mean annual bias < 0.01 °C. The time intervals of the analysed measurements coincide with the acquisition times of MODIS and Copernicus Sentinel 3 over Heraklion; hence, the derived estimates can be used in future spaceborne calculations of urban energy budget parameters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    https://en.climate-data.org/europe/greece/heraklion/heraklion-591/

References

  1. Appelhans T, Mwangomo E, Hardy DR et al (2015) Evaluating machine learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania. Spat Stat. https://doi.org/10.1016/j.spasta.2015.05.008

  2. Bastiaanssen WGM, Pelgrum H, Wang J, Ma Y, Moreno JF, Roerink GJ, van der Wal T (1998) A remote sensing surface energy balance algorithm for land (SEBAL): 2. Validation J Hydrol 212-213:213–229. https://doi.org/10.1016/S0022-1694(98)00254-6

    Article  Google Scholar 

  3. Bechtel B, Wiesner S, Zakšek K (2014) Estimation of dense time series of urban air temperatures from multitemporal geostationary satellite data. IEEE J Sel Top Appl Earth Obs Remote Sens. 7:4129–4137. https://doi.org/10.1109/JSTARS.2014.2322449

    Article  Google Scholar 

  4. Bechtel B, Zakšek K, Oßenbrügge J, Kaveckis G, Böhner J (2017) Towards a satellite based monitoring of urban air temperatures. Sustain Cities Soc 34:22–31. https://doi.org/10.1016/j.scs.2017.05.018

    Article  Google Scholar 

  5. Benali A, Carvalho AC, Nunes JP, Carvalhais N, Santos A (2012) Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens Environ 124:108–121. https://doi.org/10.1016/j.rse.2012.04.024

    Article  Google Scholar 

  6. Berger C, Rosentreter J, Voltersen M, Baumgart C, Schmullius C, Hese S (2017) Spatio-temporal analysis of the relationship between 2D/3D urban site characteristics and land surface temperature. Remote Sens Environ 193:225–243. https://doi.org/10.1016/j.rse.2017.02.020

    Article  Google Scholar 

  7. Bilgili BC, Erahin S, Özyavuz M (2017) Spatial prediction of air temperature in East Central Anatolia of Turkey. ISPRS Ann Photogramm Remote Sens Spat Inf Sci IV-4/W4:153–159. https://doi.org/10.5194/isprs-annals-IV-4-W4-153-2017

    Article  Google Scholar 

  8. Blennow K (1998) Modelling minimum air temperature in partially and clear felled forests. Agric For Meteorol 91:223–235. https://doi.org/10.1016/S0168-1923(98)00069-0

    Article  Google Scholar 

  9. Bonan GB, Levis S, Kergoat L, Oleson KW (2002) Landscapes as patches of plant functional types: an integrating concept for climate and ecosystem models. Glob Biogeochem Cycles 16:5-1–5-23. https://doi.org/10.1029/2000gb001360

    Article  Google Scholar 

  10. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35. https://doi.org/10.1007/s00265-010-1029-6

    Article  Google Scholar 

  11. Chapman L, Muller CL, Young DT, Warren EL, Grimmond CSB, Cai XM, Ferranti EJS (2015) The Birmingham Urban Climate Laboratory: an open meteorological test bed and challenges of the smart city. Bull Am Meteorol Soc 96:1545–1560. https://doi.org/10.1175/BAMS-D-13-00193.1

    Article  Google Scholar 

  12. Christen A, Vogt R (2004) Energy and radiation balance of a central European City. Int J Climatol 24:1395–1421. https://doi.org/10.1002/joc.1074

    Article  Google Scholar 

  13. Chrysoulakis N, Grimmond S, Feigenwinter C, Lindberg F, Gastellu-Etchegorry JP, Marconcini M, Mitraka Z, Stagakis S, Crawford B, Olofson F, Landier L, Morrison W, Parlow E (2018) Urban energy exchanges monitoring from space. Sci Rep 8:11498. https://doi.org/10.1038/s41598-018-29873-x

    Article  Google Scholar 

  14. Chun B, Guldmann JM (2014) Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc Urban Plan 125:76–88. https://doi.org/10.1016/j.landurbplan.2014.01.016

    Article  Google Scholar 

  15. Crawford B, Grimmond CSB, Ward HC, Morrison W, Kotthaus S (2017) Spatial and temporal patterns of surface-atmosphere energy exchange in a dense urban environment using scintillometry. Q J R Meteorol Soc 143:817–833. https://doi.org/10.1002/qj.2967

    Article  Google Scholar 

  16. Cressie N (1992) Statistics for spatial data. Terra Nov 4:613–617. https://doi.org/10.1111/j.1365-3121.1992.tb00605.x

    Article  Google Scholar 

  17. Cresswell MP, Morse AP, Thomson MC, Connor SJ (1999) Estimating surface air temperatures, from meteosat land surface temperatures, using an empirical solar zenith angle model. Int J Remote Sens 20:1125–1132. https://doi.org/10.1080/014311699212885

    Article  Google Scholar 

  18. Cristobal J, Ninyerola M, Pons X (2008) Modeling air temperature through a combination of remote sensing and GIS data. J Geophys Res:D13106. https://doi.org/10.1029/2007jd009318

  19. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop) 36:27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  20. Draper NR, Smith H (1998) Applied regression analysis

  21. Edenhofer O, Madruga RP, Sokona Y, et al (2011) Renewable energy sources and climate change mitigation: special report of the intergovernmental panel on climate change

  22. Emamifar S, Rahimikhoob A, Noroozi AA (2013) Daily mean air temperature estimation from MODIS land surface temperature products based on M5 model tree. Int J Climatol 33:3174–3181. https://doi.org/10.1002/joc.3655

    Article  Google Scholar 

  23. Feigenwinter C, Vogt R, Parlow E, Lindberg F, Marconcini M, Frate FD, Chrysoulakis N (2018) Spatial distribution of sensible and latent heat flux in the city of Basel (Switzerland). IEEE J Sel Top Appl Earth Obs Remote Sens 11:2717–2723. https://doi.org/10.1109/JSTARS.2018.2807815

    Article  Google Scholar 

  24. Florio EN, Lele SR, Chang YC et al (2004) Integrating AVHRR satellite data and NOAA ground observations to predict surface air temperature: a statistical approach. Int J Remote Sens 25:2979–2994. https://doi.org/10.1080/01431160310001624593

    Article  Google Scholar 

  25. Golkar F, Sabziparvar AA, Khanbilvardi R, Nazemosadat MJ, Zand- Parsa S, Rezaei Y (2018) Estimation of instantaneous air temperature using remote sensing data. Int J Remote Sens 39:258–275. https://doi.org/10.1080/01431161.2017.1382743

    Article  Google Scholar 

  26. Goward SN, Waring RH, Dye DG, Yang J (1994) Ecological remote sensing at OTTER: Satellite macroscale observations. Ecol Appl 4:322–343. https://doi.org/10.2307/1941937

    Article  Google Scholar 

  27. Griffith D (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization

  28. Griffith D, Paelinck J (2018) Clustering: spatial autocorrelation and location quotients. Adv Stud Theor Appl Econometrics:61–71

  29. Grimm NB, Faeth SH, Golubiewski NE et al (2008) Global change and the ecology of cities. Science (80-. )

  30. Guthery FS, Burnham KP, Anderson DR (2003) Model selection and multimodel inference: a practical information-theoretic approach. J Wildl Manag 67:655. https://doi.org/10.2307/3802723

    Article  Google Scholar 

  31. Hair JF, Anderson RE, Tatham RL, Black WC (2009) Multivariate Data Analysis

  32. Hengl T, Heuvelink GBM, Rossiter DG (2007) About regression-kriging: from equations to case studies. Comput Geosci 33:1301–1315. https://doi.org/10.1016/j.cageo.2007.05.001

    Article  Google Scholar 

  33. Huband NDS, Monteith JL (1986a) Radiative surface temperature and energy balance of a wheat canopy – I. Comparison of radiative and aerodynamic canopy temperature. Boundary-Layer Meteorol 36:1–17. https://doi.org/10.1007/BF00117455

    Article  Google Scholar 

  34. Huband NDS, Monteith JL (1986b) Radiative surface temperature and energy balance of a wheat canopy – II. Estimating fluxes of sensible and latent heat. Boundary-Layer Meteorol 36:107–116. https://doi.org/10.1007/BF00117462

    Article  Google Scholar 

  35. Jacob DJ, Winner DA (2009) Effect of climate change on air quality. Atmos Environ 43:51–63. https://doi.org/10.1016/j.atmosenv.2008.09.051

    Article  Google Scholar 

  36. Kamarianakis Y, Li X, Turner BL, Brazel AJ (2017) On the effects of landscape configuration on summer diurnal temperatures in urban residential areas: application in Phoenix, AZ. Front Earth Sci 13:1–19. https://doi.org/10.1007/s11707-017-0678-4

    Article  Google Scholar 

  37. Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parametrization for real urban surfaces. Boundary-Layer Meteorol 148:357–377. https://doi.org/10.1007/s10546-013-9818-x

    Article  Google Scholar 

  38. Kent CW, Grimmond S, Barlow J, et al (2017) Evaluation of urban local-scale aerodynamic parameters: implications for the vertical profile of wind speed and for source areas. Boundary-Layer Meteorol

  39. Köppen W, Geiger R (1936) Handbuch der Klimatologie: Das geographische System der Klimate

  40. Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J South African Inst Min Metall 52:119–139

    Google Scholar 

  41. Kustas WP, Norman JM (1996) Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol Sci J des Sci Hydrol

  42. Kustas WP, Norman JM, Anderson MC, French AN (2003) Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship. Remote Sens Environ 85:429–440. https://doi.org/10.1016/S0034-4257(03)00036-1

    Article  Google Scholar 

  43. Kutner MH, Nachtsheim CJ, Neter J (2004) Applied linear models

  44. Li J, Heap AD (2014) Spatial interpolation methods applied in the environmental sciences: a review. Environ Model Softw 53:173–189

    Article  Google Scholar 

  45. Li J, Heap AD, Potter A, Daniell JJ (2011) Application of machine learning methods to spatial interpolation of environmental variables. Environ Model Softw 26:1647–1659. https://doi.org/10.1016/j.envsoft.2011.07.004

    Article  Google Scholar 

  46. Lindberg F, Grimmond CSB, Gabey A et al (2018) Urban multi-scale environmental Predictor (UMEP): An integrated tool for city-based climate services. Environ Model Softw. https://doi.org/10.1016/j.envsoft.2017.09.020

  47. Mao KB, Tang HJ, Wang XF, Zhou QB, Wang DL (2008) Near-surface air temperature estimation from ASTER data based on neural network algorithm. Int J Remote Sens 29:6021–6028. https://doi.org/10.1080/01431160802192160

    Article  Google Scholar 

  48. Marconcini M, Heldens W, Del Frate F, et al (2017) EO-based products in support of urban heat fluxes estimation. In: 2017 Joint urban remote sensing event, JURSE 2017

  49. Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246

    Article  Google Scholar 

  50. McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks.[see comment][erratum appears in Lancet. 2006 Sep 2;368(9538):842]. Lancet

  51. Monestiez P, Courault D, Allard D, Ruget F (2001) Spatial interpolation of air temperature using environmental context: application to a crop model. Environ Ecol Stat 8:297–309. https://doi.org/10.1023/A:1012726317935

    Article  Google Scholar 

  52. Murakami D, Griffith DA (2019) Eigenvector spatial filtering for large data sets: fixed and random effects approaches. Geogr Anal 51:23–49. https://doi.org/10.1111/gean.12156

    Article  Google Scholar 

  53. Myers DE (1994) Spatial interpolation: an overview. Geoderma. 62:17–28. https://doi.org/10.1016/0016-7061(94)90025-6

    Article  Google Scholar 

  54. Myint SW, Wentz EA, Brazel AJ, Quattrochi DA (2013) The impact of distinct anthropogenic and vegetation features on urban warming. Landsc Ecol 28:959–978. https://doi.org/10.1007/s10980-013-9868-y

    Article  Google Scholar 

  55. Nichol J (2005) Remote sensing of urban heat islands by day and night. Photogramm Eng Remote Sens. https://doi.org/10.14358/pers.71.5.613

  56. Nichol JE, To PH (2012) Temporal characteristics of thermal satellite images for urban heat stress and heat island mapping. ISPRS J Photogramm Remote Sens 74:153–162. https://doi.org/10.1016/j.isprsjprs.2012.09.007

    Article  Google Scholar 

  57. Nichol JE, Fung WY, Lam K, Wong MS (2009) Urban heat island diagnosis using ASTER satellite images and “in situ” air temperature. Atmos Res 94:276–284. https://doi.org/10.1016/j.atmosres.2009.06.011

    Article  Google Scholar 

  58. Nikoloudakis N, Stagakis S, Mitraka Z et al (2018) Estimation of urban air temperature spatial patterns based on sensors network observations and satellite derived predictors. https://doi.org/10.1117/12.2326406

  59. Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841. https://doi.org/10.1002/1097-0088(20001130)20:14<1823::AID-JOC566>3.0.CO;2-B

    Article  Google Scholar 

  60. Noi PT, Kappas M, Degener J (2016) Estimating daily maximum and minimum land air surface temperature using MODIS land surface temperature data and ground truth data in Northern Vietnam. Remote Sens 8. https://doi.org/10.3390/rs8121002

  61. Odeh IOA, McBratney AB, Chittleborough DJ (1994) Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma. 63:197–214. https://doi.org/10.1016/0016-7061(94)90063-9

    Article  Google Scholar 

  62. Odeh IOA, McBratney AB, Chittleborough DJ (1995) Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma. 67:215–226. https://doi.org/10.1016/0016-7061(95)00007-B

    Article  Google Scholar 

  63. Oke TR (1973) City size and the urban heat island. Atmos Environ 7:769–779. https://doi.org/10.1016/0004-6981(73)90140-6

    Article  Google Scholar 

  64. Oke TR (1988) Street design and urban canopy layer climate. Energy Build 11:103–113. https://doi.org/10.1016/0378-7788(88)90026-6

    Article  Google Scholar 

  65. Oke TR, Mills G, Christen A, Voogt JA (2017) Urban climates

  66. Pichierri M, Bonafoni S, Biondi R (2012) Satellite air temperature estimation for monitoring the canopy layer heat island of Milan. Remote Sens Environ 127:130–138. https://doi.org/10.1016/j.rse.2012.08.025

    Article  Google Scholar 

  67. Prihodko L, Goward SN (1997) Estimation of air temperature from remotely sensed surface observations. Remote Sens Environ 60:335–346. https://doi.org/10.1016/S0034-4257(96)00216-7

    Article  Google Scholar 

  68. Quattrochi D, Luvall J (2010) Thermal remote sensing in land surface processing

  69. Rao P (1972) Remote sensing of urban “heat islands” from an environmental satellite. Bull Am Meteorol Soc 53:647–648

    Google Scholar 

  70. Riddering JP, Queen LP (2006) Estimating near-surface air temperature with NOAA AVHRR. Can J Remote Sens 32:33–43. https://doi.org/10.5589/m06-004

    Article  Google Scholar 

  71. Şahin M (2012) Modelling of air temperature using remote sensing and artificial neural network in Turkey. Adv Space Res 50:973–985. https://doi.org/10.1016/j.asr.2012.06.021

    Article  Google Scholar 

  72. Sarrat C, Lemonsu A, Masson V, Guedalia D (2006) Impact of urban heat island on regional atmospheric pollution. Atmos Environ 40:1743–1758. https://doi.org/10.1016/j.atmosenv.2005.11.037

    Article  Google Scholar 

  73. Schmid HP (2002) Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agric For Meteorol 113:159–183. https://doi.org/10.1016/S0168-1923(02)00107-7

    Article  Google Scholar 

  74. Stagakis S, Chrysoulakis N, Spyridakis N, Feigenwinter C, Vogt R (2019) Eddy covariance measurements and source partitioning of CO2 emissions in an urban environment: application for Heraklion, Greece. Atmos Environ 201:278–292. https://doi.org/10.1016/j.atmosenv.2019.01.009

    Article  Google Scholar 

  75. Stathopoulou M, Cartalis C, Chrysoulakis N (2006) Using midday surface temperature to estimate cooling degree-days from NOAA-AVHRR thermal infrared data: an application for Athens, Greece. Sol Energy doi 80:414–422. https://doi.org/10.1016/j.solener.2005.02.004

    Article  Google Scholar 

  76. Szymanowski M, Kryza M, Spallek W (2013) Regression-based air temperature spatial prediction models: an example from Poland. Meteorol Zeitschrift 22:577–585. https://doi.org/10.1127/0941-2948/2013/0440

    Article  Google Scholar 

  77. Tadić J, Ilic V, Biraud S (2015) Examination of geostatistical and machine-learning techniques as interpolators in anisotropic atmospheric environments. Atmos Environ 111:28–38. https://doi.org/10.1016/j.atmosenv.2015.03.063

    Article  Google Scholar 

  78. Vancutsem C, Ceccato P, Dinku T, Connor SJ (2010) Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens Environ 114:449–465. https://doi.org/10.1016/j.rse.2009.10.002

    Article  Google Scholar 

  79. Vázquez DP, Reyes FJO, Arboledas LA (1997) A comparative study of algorithms for estimating land surface temperature from AVHRR data. Remote Sens Environ 62:215–222. https://doi.org/10.1016/S0034-4257(97)00091-6

    Article  Google Scholar 

  80. Vogt JV, Viau AA, Paquet F (2002) Mapping regional air temperature fields using satellite-derived surface skin temperatures. Int J Climatol 17:1559–1579. https://doi.org/10.1002/(sici)1097-0088(19971130)17:14<1559::aid-joc211>3.3.co;2-x

    Article  Google Scholar 

  81. Wang M, He G, Zhang Z, Wang G, Zhang Z, Cao X, Wu Z, Liu X (2017) Comparison of spatial interpolation and regression analysis models for an estimation of monthly near surface air temperature in China. Remote Sens 9. https://doi.org/10.3390/rs9121278

  82. Wicki A, Parlow E, Feigenwinter C (2018) Evaluation and modeling of urban heat island intensity in Basel, Switzerland. Climate 6. https://doi.org/10.3390/cli6030055

  83. Zakšek K, Schroedter-Homscheidt M (2009) Parameterization of air temperature in high temporal and spatial resolution from a combination of the SEVIRI and MODIS instruments. ISPRS J Photogramm Remote Sens 64:414–421. https://doi.org/10.1016/j.isprsjprs.2009.02.006

    Article  Google Scholar 

  84. Zhao D, Zhang W, Shijin X (2007) A neural network algorithm to retrieve near-surface air temperature from landsat ETM+ imagery over the Hanjiang River Basin, China. In: International Geoscience and Remote Sensing Symposium (IGARSS)

Download references

Acknowledgements

We would like to thank George Kogxulakis for his assistance with the maintenance and support of the AWS network database and Nektarios Spyridakis for his assistance with the maintenance and support of the AWS network. The Hellenic Cadastre (National Cadastre & Mapping Agency S.A.) is acknowledged for the provision of the DSM and the DTM of Heraklion.

Funding

Dr. Nikolaos Nikoloudakis acknowledges receipt of a fellowship funded by Stavros Niarchos Foundation through the ARCHERS. This work was supported by the European Union’s Horizon 2020 research and innovation programme URBANFLUXES (grant agreement No 637519).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Nikoloudakis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikoloudakis, N., Stagakis, S., Mitraka, Z. et al. Spatial interpolation of urban air temperatures using satellite-derived predictors. Theor Appl Climatol 141, 657–672 (2020). https://doi.org/10.1007/s00704-020-03230-3

Download citation