Skip to main content

Advertisement

Log in

Spatial and temporal variations in soil temperatures over the Qinghai–Tibet Plateau from 1980 to 2017 based on reanalysis products

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

A change in soil temperature (ST) is a significant indicator of climate change, so understanding the variations in ST is required for studying the changes of the Qinghai–Tibet Plateau (QTP) permafrost. We investigated the performance of three reanalysis ST products at three soil depths (0–10 cm, 10–40 cm, and 40–100 cm) on the permafrost regions of the QTP: the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim), the second version of the National Centers for Environmental Prediction Climate Forecast System (CFSv2), and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Our results indicate that all three reanalysis ST products underestimate observations with negative mean bias error values at all three soil layers. The MERRA-2 product performed best in the first and second soil layers, and the ERA-Interim product performed best in the third soil layer. The spatiotemporal changes of annual and seasonal STs on the QTP from 1980 to 2017 were investigated using Sen’s slope estimator and the Mann–Kendall test. There was an increasing trend of ST in the deeper soil layer, which was less than that of the shallow soil layers in the spring and summer as well as annually. In contrast, the first-layer ST warming rate was significantly lower than that of the deeper soil layers in the autumn and winter. The significantly (P < 0.01) increasing trend of the annual ST indicates that the QTP has experienced climate warming during the past 38 years, which is one of the factors promoting permafrost degradation of the QTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albergel C, Dutra E, Muñoz-Sabater J, Haiden T, Balsamo G, Beljaars A, de Isaksen L, Rosnay P, Sandu I, Wedi N (2015) Soil temperature at ECMWF: an assessment using ground-based observations. J Geophys Res-Atmos 120(4):2014JD022505

    Article  Google Scholar 

  • Bi H, Ma J, Zheng W, Zeng J (2016) Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. J Geophys Res-Atmos 121:2658–2678. https://doi.org/10.1002/2015JD024131

    Article  Google Scholar 

  • Bosilovich M, Lucchesi R, Suarez M (2015) MERRA-2: file specification. GMAO Office Note 9 (version 1.0), 73 pp, available from http://gmao/gsfc/nasa/gov/pubs/office_notes

  • Chen H, Nan Z, Zhao L, Ding Y, Chen J, Pang Q (2015) Noah modelling of the permafrost distribution and characteristics in the West Kunlun area, Qinghai-Tibet Plateau, China. Permafr Periglac Process 26(2):160–174

    Article  Google Scholar 

  • Chen Y, Deng H, Li B, Li Z, Xu C (2014) Abrupt change of temperature and precipitation extremes in the arid region of Northwest China. Quat Int 336:35–43. https://doi.org/10.1016/j.quaint.2013.12.057

    Article  Google Scholar 

  • Cha DH, Lee DK, Hong SY (2008) Impact of boundary layer processes on seasonal simulation of the East Asian summer monsoon using a regional climate model. Meteorol Atmospheric Phys 100(1–4):53–72

    Article  Google Scholar 

  • Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res Earth Surf 112(F2)

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. https://doi.org/10.1038/nature04514

    Article  Google Scholar 

  • Douville H, Viterbo P, Mahfouf JF, Beljaars ACM (2000) Evaluation of the optimum interpolation and nudging techniques for soil moisture analysis using FIFE data. Mon Weather Rev 128(6):1733–1756

    Article  Google Scholar 

  • Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(566):553–597

    Article  Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale eta model. J Geophys Res-Atmos 108(D22)

  • Fang X, Luo S, Lyu S (2018) Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960–2014. Theor Appl Climatol 135(1–2):169–181

    Google Scholar 

  • Gao Z, Horton R, Wang L, Liu H, Wen J (2010) An improved force-restore method for soil temperature prediction. Eur J Soil Sci 59(5):972–981

    Article  Google Scholar 

  • Gelaro R, Mccarty W, Randles C, Darmenov A, Bosilovich MG, Cullather R, Buchard V, Gu W, Putman W, Schubert SD (2017) The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J Clim 30(14):5419–5454

    Article  Google Scholar 

  • Guo D, Wang A, Li D, Hua W (2018) Simulation of changes in the near-surface soil freeze/thaw cycle using CLM4.5 with four atmospheric forcing data sets. J Geophys Res-Atmos 123(5):2509–2523

    Article  Google Scholar 

  • Guo D, Wang H (2016) Permafrost degradation and associated ground settlement estimation under 2 °C global warming. Clim Dyn 49(7–8):2569–2583

    Google Scholar 

  • Hansson K, Šimůnek J, Mizoguchi M, Lundin LC, van Genuchten MT (2004) Water flow and heat transport in frozen soil. Vadose Zone J 3(2):693–704

    Article  Google Scholar 

  • Hu G, Zhao L, Li R, Wu X, Wu T, Xie C, Zhu X, Su Y (2019) Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma 337:893–905

    Article  Google Scholar 

  • Hu G, Zhao L, Wu X, Li R, Wu T, Xie C, Pang Q, Zou D (2017) Comparison of the thermal conductivity parameterizations for a freeze-thaw algorithm with a multi-layered soil in permafrost regions. Catena 156:244–251. https://doi.org/10.1016/j.catena.2017.04.011

    Article  Google Scholar 

  • Huang F, Zhan W, Ju W, Wang Z (2014) Improved reconstruction of soil thermal field using two depth measurements of soil temperature. J Hydrol 519:711–719. https://doi.org/10.1016/j.jhydrol.2014.08.014

    Article  Google Scholar 

  • Jiang JH, Su H, Zhai C, Wu L, Minschwaner K, Mold A, Tompkins A (2015) An assessment of upper-troposphere and lower-stratosphere water vapor in MERRA, MERRA2 and ECMWF reanalyses using Aura MLS observations. J Geophys Res-Atmos 120(22). https://doi.org/10.1002/2015JD023752

  • Koster RD, Suarez MJ, Ducharne A, Stieglitz M, Kumar P (2000) A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J Geophys Res-Atmos 105:24809–24822

  • Lan C, Zhang Y, Bohn TJ, Zhao L, Li J, Liu Q, Zhou B (2015) Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau. J Geophys Res-Atmos 120(16):8276–8298

    Article  Google Scholar 

  • Li R, Zhao L, Wu T, Ding Y, Xiao Y, Hu G, Zou D, Li W, Yu W, Jiao Y (2014) The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai–Xizang Plateau, China. Environ Earth Sci 72(6):2091–2099

    Article  Google Scholar 

  • Li X, Cheng G, Lu L (2005) Spatial analysis of air temperature in the Qinghai-Tibet Plateau. Arct Antarct Alp Res 37(2):246–252

    Article  Google Scholar 

  • Li X, Jin R, Pan X, Zhang T, Guo J (2012) Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau. Int J Appl Earth Obs Geoinf 17:33–42

    Article  Google Scholar 

  • Liu C, Yu Y, Xie J, Zhou X, Li J, Ge J (2015) Applicability of soil temperature and moisture in several datasets over Qinghai-Xizang Plateau. Plateau Meteorol 34(3):653–665

    Google Scholar 

  • Luo D, Jin H, Jin R, Yang X, Lu L (2014) Spatiotemporal variations of climate warming in northern Northeast China as indicated by freezing and thawing indices. Quat Int 349(187–195):187–195

    Article  Google Scholar 

  • Luo D, Jin H, He R, Wang X, Muskett RR, Marchenko SS, Romanovsky VE (2018a) Characteristics of water-heat exchanges and inconsistent surface temperature changes at an elevational permafrost site on the Qinghai-Tibet Plateau. J Geophys Res Atmospher 123(18):10,057–010,075. https://doi.org/10.1029/2018JD028298

    Article  Google Scholar 

  • Luo D, Jin H, Jin X, He R, Li X, Muskett RR, Marchenko SS, Romanovsky VE (2018b) Elevation-dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains, northeastern Qinghai-Tibet Plateau, Southwest China. Permafr Periglac Process 29(4):257–270

    Article  Google Scholar 

  • Luo D, Jin H, Wu Q, Bense VF, He R, Ma Q, Gao S, Jin X, Lv L (2018c) Thermal regime of warm-dry permafrost in relation to ground surface temperature in the source areas of the Yangtze and Yellow rivers on the Qinghai-Tibet Plateau, SW China. Sci Total Environ 618:1033–1045

    Article  Google Scholar 

  • Luo D, Liu L, Jin H, Wang X, Chen F (2020) Characteristics of ground surface temperature at Chalaping in the source area of the Yellow River, northeastern Tibetan Plateau. Agric For Meteorol 281:107819

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. J Econometric Soc 13(3):245–259

    Article  Google Scholar 

  • Ma L, Zhang T, Li Q, Frauenfeld OW, Qin D (2008) Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China. J Geophys Res-Atmos 113(D15). https://doi.org/10.1029/2007JD009549

  • Ma L, Zhang T, Frauenfeld OW, Ye B, Yang D, Qin D (2009) Evaluation of precipitation from the ERA-40, NCEP-1, and NCEP-2 reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China. J Geophys Res-Atmos 114:D09105. https://doi.org/10.1029/2008JD011178

    Article  Google Scholar 

  • McGuire AD et al (2016) Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Glob Biogeochem Cycles 30(7):1015–1037

    Article  Google Scholar 

  • Mellander PE, Löfvenius MO, Laudon H (2007) Climate change impact on snow and soil temperature in boreal Scots pine stands. Clim Chang 85(1–2):179–193

    Article  Google Scholar 

  • Molod A, Takacs L, Suarez M, Bacmeister J, Song IS, Eichmann A (2015) Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci Model Dev 8(5):1339–1356

    Article  Google Scholar 

  • Oelke C, Zhang T (2004) A model study of circum-Arctic soil temperatures. Permafr Periglac Process 15(2):103–121

    Article  Google Scholar 

  • Peng XQ, Zhang T, Frauenfeld OW, Wang K, Cao B, Zhong X, Su H, Mu C (2017) Response of seasonal soil freeze depth to climate change across China. Cryosphere 11:1059–1073

    Article  Google Scholar 

  • Peng XQ, Frauenfeld OW, Cao B, Wang K, Wang HJ, Su H, Huang Z, Yue DX, Zhang TJ (2016) Response of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across China. J Geophys Res Earth Surf 121:1984–2000. https://doi.org/10.1002/2016JF003876

    Article  Google Scholar 

  • Sen PK (1968) Estimate of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  • Qian B, Gregorich EG, Gameda S, Hopkins DW, Wang XL (2011) Observed soil temperature trends associated with climate change in Canada. J Geophys Res-Atmos 116(D2):1–16

    Article  Google Scholar 

  • Qin Y, Wu T, Ren L, Yu W, Wang T, Zhu X, Wang W, Hu G, Tian L (2016) Using ERA–Interim reanalysis dataset to assess the changes of ground surface freezing and thawing condition on the Qinghai–Tibet Plateau. Environ Earth Sci 75(9): 826-838, https://doi.org/10.1007/s12665-016-5633-2

  • Qin Y, Wu T, Wu X, Li R, Xie C, Qiao Y, Hu G, Zhu X, Wang W, Shang W (2017a) Assessment of reanalysis soil moisture products in the permafrost regions of the central of the Qinghai-Tibet Plateau. Hydrol Process 31(26):4647–4659

    Article  Google Scholar 

  • Qin Y, Wu T, Zhao L, Wu X, Li R, Xie C, Pang Q, Hu G, Qiao Y, Zhao G (2017b) Numerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan Plateau. J Geophys Res-Atmos 122(21):11604–11620

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Todling R, Bacmeister J, Takacs L, Liu HC, Gu W, Sienkiewicz M, Koster R.D, Gelaro R, Stajner I, Nielsen JE (2008) The GEOS-5 data assimilation system: documentation of versions 5.0.1, 5.1.0, and 5.2.0. NASA technical report series on global modeling and data assimilation 27. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120011955.pdf

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, Silva A, Gu W, Joiner J, Koster RD, Koster R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J Clim 24(14):3624–3648

    Article  Google Scholar 

  • Robock A, Vinnikov KY, Srinivasan G, Entin JK, Hollinger SE, Speranskaya NA, Liu S, Namkhai A (2000) The global soil moisture data bank. Bull Am Meteorol Soc 81(6):1281–1299

    Article  Google Scholar 

  • Romanovsky VE, Drozdov DS, Oberman NG, Malkova GV, Kholodov AL, Marchenko SS, Moskalenko NG, Sergeev DO, Ukraintseva NG, Abramov AA, Gilichinsky DA, Vasiliev AA (2010) Thermal state of permafrost in Russia. Permafr Periglac Process 21(2):136–155

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan HL, Wu XR, Wang JD, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D (2010) The NCEP Climate Forecast System reanalysis. Bull Am Meteorol Soc 91(8):1015–1057

    Article  Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou YT, Chuang HY, Iredell M (2012) The NCEP Climate Forecast System version 2. J Clim 27(6):2185–2208

    Article  Google Scholar 

  • Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y, Chuang H, Iredell M, Ek M, Meng J, Yang R, Mendez M, Dool H, Zhang Q, Wang W, Chen M, Becker E (2014) The NCEP Climate Forecast System version 2. J Clim 27(6):2185–2208

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF newsletter 110:25–35

    Google Scholar 

  • Su Z, Wen J, Dente L, Velde RV, Wang L, Ma Y, Yang K, Hu Z (2011) The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol Earth Syst Sci 15(7):2303–2316

    Article  Google Scholar 

  • Wang A, Zeng X (2012) Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res-Atmos 117:D05102. https://doi.org/10.1029/2011JD016553

    Article  Google Scholar 

  • Wang C, Yang K (2018) A new scheme for considering soil water-heat transport coupling based on community land model: model description and preliminary validation. J Adv Model Earth Sys 10:927–950. https://doi.org/10.1002/2017MS001148

    Article  Google Scholar 

  • Wang C, Wang Z, Kong Y, Zhang FM, Yang K, Zhang TJ (2019) Most of the Northern Hemisphere permafrost remains under climate change. Sci Rep 9(1):3295

    Article  Google Scholar 

  • Wang G, Hu H, Li T (2009) The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed. J Hydrol 375(3–4):438–449

    Article  Google Scholar 

  • Wang SL, Jin HJ, Li SX, Zhao L (2000) Permafrost degradation on the Qinghai–Tibet Plateau and its environmental impacts. Permafr Periglac Process 11(1):43–53

    Article  Google Scholar 

  • Wang X, Yang M, Liang X, Pang G, Wan G, Chen X, Luo X (2014) The dramatic climate warming in the Qaidam Basin, northeastern Tibetan Plateau, during 1961–2010. Int J Climatol 34(5):1524–1537

    Article  Google Scholar 

  • Wang Y, Chen W, Zhang J, Nath D (2013) Relationship between soil temperature in may over Northwest China and the East Asian summer monsoon precipitation. J Meteorol Res 27(5):716–724

    Google Scholar 

  • Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63(11):1309–1369

    Article  Google Scholar 

  • Wu Q, Zhang T, Liu Y (2010) Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Glob Planet Chang 72(1–2):32–38

    Article  Google Scholar 

  • Wu T, Wang Q, Zhao L, Batkhishig O, Watanabe M (2011) Observed trends in surface freezing/thawing index over the period 1987–2005 in Mongolia. Cold Reg Sci Technol 69(1):105–111

    Google Scholar 

  • Wu T, Qin Y, Wu X, Li R, Zou D, Xie C (2018a) Spatiotemporal changes of freezing/thawing indices and their response to recent climate change on the Qinghai–Tibet Plateau from 1980 to 2013. Theor Appl Climatol 132(3–4):1187–1199

    Article  Google Scholar 

  • Wu T, Lin Z, Ren L, Wang Q, Xie C, Pang Q (2013) Recent ground surface warming and its effects on permafrost on the central Qinghai–Tibet Plateau. Int J Climatol 33(4): 920–930

  • Wu X, Nan Z, Zhao S, Zhao L, Cheng G (2018b) Spatial modeling of permafrost distribution and properties on the Qinghai-Tibet Plateau. Permafr Periglac Process 29(2):86–99

    Article  Google Scholar 

  • Wu X, Zhao L, Hu G, Liu G, Li W, Ding Y (2017) Permafrost and land cover as controlling factors for light fraction organic matter on the southern Qinghai-Tibetan Plateau. Sci Total Environ 613–614:1165–1174

    Google Scholar 

  • Wu WS, Purser RJ, Parrish DF (2002) Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon Weather Rev 130(12):2905–2916

    Article  Google Scholar 

  • Xiao Y, Zhao L, Dai Y, Li R, Pang Q, Yao J (2013) Representing permafrost properties in CoLM for the Qinghai–Xizang (Tibetan) Plateau. Cold Reg Sci Technol 87:68–77. https://doi.org/10.1016/j.coldregions.2012.12.004

    Article  Google Scholar 

  • Xie P, Chen M, Yatagai A, Hayasaka T, Fukushima Y, Yang S (2007) A gauge-based analysis of daily precipitation over East Asia. J Hydrometeorol 8(3):607–626

    Article  Google Scholar 

  • Yang K, Wu H, Qin J, Lin C, Tang W, Chen Y (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Glob Planet Chang 112:79–91. https://doi.org/10.1016/j.gloplacha.2013.12.001

    Article  Google Scholar 

  • Yang K, Zhang J (2018) Evaluation of reanalysis datasets against observational soil temperature data over China. Clim Dyn 50(1–2):317–337

    Article  Google Scholar 

  • Yang K, Wang C, Li S (2018) Improved simulation of frozen-thawing process in land surface model (CLM4.5). J Geophys Res-Atmos 123:238–258. https://doi.org/10.1029/2017JD028260

    Article  Google Scholar 

  • Yang K, Wang C (2019) Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations. Agric For Meteorol 265:280–294. https://doi.org/10.1016/j.agrformet.2018.11.011

    Article  Google Scholar 

  • Yang M, Yao T, Gou X, Tang H (2007) Water recycling between the land surface and atmosphere on the northern Tibetan Plateau—a case study at flat observation sites. Arct Antarct Alp Res 39(4):694–698

    Article  Google Scholar 

  • Yang M, Nelson FE, Shiklomanov NI, Guo D, Wan G (2010) Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth-Sci Rev 103(1–2):31–44

    Article  Google Scholar 

  • Yeşilırmak, Ercan (2014) Soil temperature trends in Büyük Menderes Basin, Turkey. Meteorol Appl 21(4):859–866

    Article  Google Scholar 

  • You Q, Fraedrich K, Ren G, Ye B, Meng X, Kang S (2012) Inconsistencies of precipitation in the eastern and central Tibetan Plateau between surface adjusted data and reanalysis. Theor Appl Climatol 109(3–4):485–496

    Article  Google Scholar 

  • You Q, Kang S, Pepin N, Wolfgang-Albert F (2010) Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Glob Planet Chang 71(1–2):124–133

    Article  Google Scholar 

  • You Q, Fraedrich K, Ren G, Pepin N, Kang S (2013) Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. Int J Climatol 3(6):1337–1347

    Article  Google Scholar 

  • Yu SG (2003) Research of sustainable development in Yangtze River Basin. Beijing: Science Press (in Chinese)

  • Zeng J, Li Z, Chen Q, Bi H, Qiu J, Zou P (2015) Evaluation of remotely sensed and reanalysis SM products over the Tibetan Plateau using in-situ observations. Remote Sens Environ 163:91–110. https://doi.org/10.1016/j.rse.2015.03.008

    Article  Google Scholar 

  • Zhang T, Barry RG, Gilichinsky D, Bykhovets SS, Sorokovikov VA, Ye J (2001) An amplified signal of climatic change in soil temperatures during the last century at Irkutsk, Russia. Clim Chang 49(1–2):41–76

    Article  Google Scholar 

  • Zhang W, Li S, Pang Q (2008a) Variation characteristics of soil temperature over Qinghai-Xizang Plateau in the past 45 years. Acta Geograph Sin 63(11):1151–1159

    Google Scholar 

  • Zhang J, Wang WC, Wei J (2008b) Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J Geophys Res-Atmos 113(D17):D17119

    Article  Google Scholar 

  • Zhao L, Wu QB, Marchenko SS, Sharkhuu N, Lewkowicz AG (2010) Thermal state of permafrost and active layer in Central Asia during the International Polar Year. Permafr Periglac Process 21(2):198–207

    Article  Google Scholar 

  • Zhao L, Li R, Ding Y, Xiao Y, Sun L, Liu Y (2011) Soil thermal regime in Qinghai-Tibet Plateau and its adjacent regions during 1977-2006. Adv Clim Chang Res 7(5):307–316

    Google Scholar 

  • Zhao T, Guo W, Fu C (2008) Calibrating and evaluating reanalysis surface temperature error by topographic correction. J Clim 21(6):1440–1446

    Article  Google Scholar 

  • Zhou LT, Du Z (2016) Regional differences in the surface energy budget over China: an evaluation of a selection of CMIP5 models. Theor Appl Climatol 124(1–2):241–266

    Article  Google Scholar 

  • Zhu F, Lan C, Zhasng Y, Xiao Y, Sun L, Liu Y (2017) Spatiotemporal variations of annual shallow soil temperature on the Tibetan Plateau during 1983–2013. Clim Dyn 51(5–6):2209–2227

    Google Scholar 

  • Zou D, Zhao L, Sheng Y, Chen J, Hu G, Wu T, Wu J, Xie C, Wu X, Pang Q (2016) A new map of the permafrost distribution on the Tibetan Plateau. Cryosphere 11(6):2527

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the European Centre for Medium-Range Weather Forecasts, the Environmental Modeling Center at National Centers for Environmental Prediction, and the National Aeronautics and Space Administration Goddard Space Flight Center for providing the reanalysis datasets for this study. The authors also thank the Cryosphere Research Station on Qinghai–Xizang Plateau, the State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, and the Chinese Academy of Sciences for providing the observations for this study. Finally, we thank the reviewers, whose comments and suggestions helped improve the paper substantially. We also thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was jointly supported by the State Key Laboratory of Cryosphere Science (grant number SKLCS-OP-2019-06); the Key Research and Development Program of Shandong Province (grant number 2019GGX101064); the Open Fund of Innovation Institute for Sustainable Maritime Architecture Research and Technology, Qingdao University of Technology (grant number 201812007); and the Lixian Scholar Project of Qingdao University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhui Qin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Liu, W., Guo, Z. et al. Spatial and temporal variations in soil temperatures over the Qinghai–Tibet Plateau from 1980 to 2017 based on reanalysis products. Theor Appl Climatol 140, 1055–1069 (2020). https://doi.org/10.1007/s00704-020-03149-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03149-9

Keywords

Navigation