Skip to main content

Advertisement

Log in

On the microphysical processing of aged combustion aerosols impacting warm rain microphysics over Asian megacities

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This paper delineates the process of activation of soot or black carbon particles into cloud droplets over Chennai, India (an Asian megacity). Archaic wood-fired cooking stove emissions from crowded shantytown settlements dispense copious amounts of carbonaceous particles into the city’s atmosphere during morning and evening cooking periods. Traffic emissions also add considerably to the city’s particulate matter loads. At other times, when these sources are reduced (e.g. during non-cooking periods), a pall of residual pollution hovers above the city. This study assesses this problem definitively through process modelling studies undertaken during a typical pre-monsoonal month (October) when the levels of pollution are very high. The novelty of this paper includes a clear quantification of the percentage of activated nuclei resulting from these sources using a sophisticated cloud chemical parcel model. The results show that 85% of the soot and black carbon particles are activated into very small low-lying cloud droplets within Chennai’s boundary layer. We further show for the first time that the presence of these particles results in a slowing down of the auto-conversion process (cloud water to rain droplets). This study could serve as a pointer for other Asian Cities with a sizeable shantytown population in India and elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ayers GP, Larson TV (1990) Numerical study of droplet size dependent chemistry in oceanic, wintertime stratus cloud at southern mid-latitudes. Journal of Atmospheric Chemistry 11(1–2): 143–167

    Article  Google Scholar 

  • Adams PJ, Seinfeld JH (2003) Disproportionate impact of particulate emissions on global cloud condensation nuclei concentrations. Geophys Res Lett 30:1239

    Article  Google Scholar 

  • Beard KV, Ochs HT (1984) Collection and coalescence efficiencies for accretion. J Geophys Res 89:7165–7169

    Article  Google Scholar 

  • Bollasina M, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 28: 502–505

    Article  Google Scholar 

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh S, Sherwood S, Stevens B, Zhang X (2013) Clouds and aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY

    Google Scholar 

  • Chandramouli C (2003) Quality of living index in Chennai: an approach paper. Proceedings of the Third International Conference on Environment and Health, Chennai, India, pp 82-88.

  • Che HC, Zhang XY, Wang YQ, Zhang L, Shen XJ, Zhang YM, Ma QL, Sun JY, Zhang YW, Wang TT (2016) Characterization and parameterization of aerosol cloud condensation nuclei activation under different pollution conditions. Scientific Reports 6 (24497)

  • Dave P, Bhushan M, Venkataraman C (2017) Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci Rep 7: 17347

  • Dentener F, Kinne S, Bond T, Boucher O, Cofala J, Generoso S, Ginoux P, Gong S, Hoelzemann JJ, Ito A, Marelli L, Penner JE, Putaud JP, Textor C, Schulz M, van der Werf GR, Wilson J (2006) Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem Phys 6:4321–4344. https://doi.org/10.5194/acp-6-4321-2006

    Article  Google Scholar 

  • Dubey B, Pal AK, Singh G (2013) Assessment of vehicular pollution in Dhanbad city using CALINE 4 model. Int J Geol Earth Environ Sci 3(1):156–164

    Google Scholar 

  • Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge 316 pp

    Google Scholar 

  • Ghan SJ, Smith SJ, Wang M, Zhang K, Pringle K, Carslaw K, Pierce J, Bauer S, Adams P (2013) A simple model of global aerosol indirect effects. J Geophys Res 118:6688–6707. https://doi.org/10.1002/jgrd.50567

    Article  Google Scholar 

  • Ghosh S, Jonas PR (1998) On the application of the classic Kessler and Berry schemes in Large Eddy Simulation models with a particular emphasis on cloud autoconversion, the onset time of precipitation and droplet evaporation. Ann Geophys 16(5):628–637

    Article  Google Scholar 

  • Ghosh S, Jonas PR, Wood R (2000) Some impact of pollutants on the development and optical properties of stratocumulus clouds. QJR Meteorol Soc 126:2851–2872. https://doi.org/10.1002/qj.49712656912

    Article  Google Scholar 

  • Ghosh S, Dávila J, Hunt JCR, Srdic A, Fernando HJS, Jonas PR (2005) How turbulence enhances coalescence of settling particles with applications to rain in cloud. Proc R Soc A 461:3059–3088

    Article  Google Scholar 

  • Ghosh S, Smith MH, Rap A (2007) Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies. Phil Trans R Soc A 365:2659–2674

    Article  Google Scholar 

  • Ghosh S, Gumber S, Varotsos C (2018) A sensitivity study of diffusional mass transfer of gases in tropical storm hydrometeors. Theor Appl Climatol 134:1083–1100

    Article  Google Scholar 

  • Gibson MD, Kundu S, Satish M (2013) Dispersion model evaluation of PM2.5, NOx and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. Atmos Pollut Res 4(2):157–167

    Article  Google Scholar 

  • Gillette DA, Porch WM (1978) The role of fluctuations of vertical and horizontal wind and particle concentration in the deposition of dust suspended by wind. J Geophys Res 83(C1):409–414

    Article  Google Scholar 

  • Global Modeling and Assimilation Office (GMAO) (2015) MERRA-2 instM_2d_lfo_Nx: 2d, monthly mean, instantaneous, single-level, assimilation, land surface forcings V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [11-02-19], 10.5067/11F99Y6TXN99

  • Habib G, Venkataraman C, Shrivastava M, Banerjee R, Stehr JW, Dickerson RR (2004) New methodology for estimating biofuel consumption for cooking: Atmospheric emissions of black carbon and sulfur dioxide from India. Glob Biogeochem Cycles 18:GB3007

    Article  Google Scholar 

  • Jayaraman A, Satheesh SK, Mitra AP, Ramanathan V (2001) Latitude gradient in aerosol properties across the inter tropical convergence zone: Results from the joint Indo-US study onboard Sagar Kanya. Curr Sci 80:128–137

    Google Scholar 

  • Joshi SV, Ghosh S (2014) On the air cleansing efficiency of an extended green wall: A CFD analysis of mechanistic details of transport processes. J Theor Biol 361:101–110. https://doi.org/10.1016/j.jtbi.2014.07.018

    Article  Google Scholar 

  • Kesarkar AP, Dalvi M, Kaginalkar A, Ojha A (2007) Coupling of the Weather Research and Forecasting Model with AERMOD for pollutant dispersion modeling. A case study for PM10 dispersion over Pune, India. Atmos Environ 41(9):1976–1988

    Article  Google Scholar 

  • Kolb CE, Cox RA, Abbatt JPD, Ammann M, Davis EJ, Donaldson DJ, Garrett BC, George C, Griffiths PT, Hanson DR, Kulmala M, McFiggans G, Pöschl U, Riipinen I, Rossi MJ, Rudich Y, Wagner PE, Winkler PM, Worsnop DR, O’Dowd CD (2010) An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos Chem Phys 10: 10561–10605

    Article  Google Scholar 

  • Kulmala M, Laaksonen A, Pirjola L (1998) Parameterizations for sulfuric acid/water nucleation rates. J Geophys Res 103(D7):8301–8307

    Article  Google Scholar 

  • Kumar A, Dikshit A, Fatima S, Patil R (2015) Application of WRF model for vehicular pollution modelling using AERMOD. Atmosp Clim Sci 5:57–62

    Google Scholar 

  • Laaksonen A, Hamde A, Joutsensaari J, Hiltunen L, Cavalli F, Junkermann W, Asmi A, Fuzzi S, Faccini MC (2005) Cloud condensation nucleus. Production from nucleation events at a highly polluted region. Geophys Res Lett 32:L06812

    Article  Google Scholar 

  • Mann GW, Carslaw KS, Spracklen DV, Ridley DA, Manktelow PT, Chipperfield MP, Pickering SJ, Johnson CE (2010) Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model. Geosci Model Dev 3:519–551. https://doi.org/10.5194/gmd-3-519-2010

    Article  Google Scholar 

  • Mason BJ (1971) The physics of cloud. Clarendon Press, Oxford 671 pp

    Google Scholar 

  • Matsui H, Hamilton DS, Mahowald NM (2018) Black carbon radiative effects highly sensitive to emitted particle size when resolving mixing-state diversity. Nat Commun 9(1). https://doi.org/10.1038/s41467-018-05635-1

  • McGraw R, Liu Y (2003) Kinetic potential and barrier crossing: a model for warm cloud drizzle formation. Phys Rev Lett 90:018501

    Article  Google Scholar 

  • National Sample Survey (2001) Consumption of some important commodities in India 1999-00. Minist Of Stat And Programme Implementation, Gov Of India, New Delhi, Rep. 461, pp 541

  • O'Connor FM et al (2014) Evaluation of the new UKCA climate-composition model. Part II. The troposphere. Geosci Model Dev 7:41–91. https://doi.org/10.5194/gmd-7-41-2014

    Article  Google Scholar 

  • O'Dowd CD, Lowe JA, Smith MH (1999) Coupling sea-salt and sulphate interactions and its impact on predicting cloud droplet concentrations. Geophys Res Lett 26:1311–1314

    Article  Google Scholar 

  • Pawlowska H, Brenguier JL (2003) An observational study of drizzle formation in stratocumulus clouds for general circulation model (GCM) parameterizations. J Geophys Res 108:8630

    Article  Google Scholar 

  • Perry S, Cimorelli A, Lee R, Paine R, Venkatram A, Weil J, Wilson R (1994) AERMOD: a dispersion model for industrial source applications. U.S. Environmental Protection Agency, Washington, D.C EPA/600/A-94/093 (NTIS PB94176179)

    Google Scholar 

  • Picardo JR, Ghosh S (2011) Removal mechanisms in a tropical boundary layer: quantification of air pollutant removal rates around a heavily afforested power plant. Air Pollut – New Dev 13:275–302

    Google Scholar 

  • Pierce JR, Adams PJ (2006) Global evaluation of CCN formation by direct emission of sea salt and growth of ultra fine sea salt. J Geophys Res 111:D06203

    Article  Google Scholar 

  • Pruppacher HR, Klett JD (1998) Microphysics of clouds and precipitation. Kluwer, Dordrecht

  • Rap A, Ghosh S, Smith MH (2009) Shepard and hardy multiquadric interpolation methods for multicomponent aerosol–cloud parameterization. J Atmos Sci 66:105–115

    Article  Google Scholar 

  • Rogers, Yau (1996) A short course in cloud physics. Elsevier, Butterworth Heinemann 304 pp

    Google Scholar 

  • Sathish Kumar CR, Chandramouli P, Samaddar A, Sharma A, Saini I, Ghosh S (2013) How atmospheric large eddies transport domestic cook stove emissions over slums: a chennai city case study. Appl Mech Mater 328:357–361

    Article  Google Scholar 

  • Smith KR, Uma R, Kishore VVN, Zhang J, Joshi V, Khalil MAK (2000) GREENHOUSE IMPLICATIONS OF HOUSEHOLD STOVES: An Analysis for India. Annu Rev Energy Environ 25: 741–763

    Article  Google Scholar 

  • Spracklen D, Pringle K, Carslaw K, Chipperfield M, Mann G (2005) A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties. Atmos Chem Phys 5:2227–2252

    Article  Google Scholar 

  • Srinivas CV, Venkatesan R, Somayaji KM, Singh AB (2006) A numerical study of sea breeze circulation observed at a tropical site Kalpakkam on the east coast of India, under different synoptic flow situations. Journal of Earth System Science 115(5): 557–574

    Article  Google Scholar 

  • Thara VP, Venkatesan R, Mursch-Radlgruber E, Rengarajan G, Jayanthi N (2002) Thermal internal boundary layer characteristics at a tropical coastal site as observed by a mini-SODAR under varying synoptic conditions. Proc Indian Acad Sci (Earth Planet Sci) 111(1):63–77

    Google Scholar 

  • Varun Raj S, Ghosh S, Sivakumar B (2009) Aerosol growth and activation in polluted air masses over a tropical metropolis in the Indian sub‐continent. Atmospheric Science Letters 10: 66–74

    Article  Google Scholar 

  • Varotsos CA, Ghosh S (2017) Impacts of climate warming on atmospheric phase transition mechanisms. Theor Appl Climatol 130(3-4):1111–1122

    Article  Google Scholar 

  • Velmurugan S, Reddy TS, Errampalli M, Rao IP (2005) Traffic operating characteristics and its impacts on air pollution in an urban area- a case study of Chennai, India. Seminar of the Eastern Asia for Transportation Studies 5:1799–1814

    Google Scholar 

  • Venkataraman C, Rao GUM (2001) Emission factors of carbon monoxide and size-resolved aerosols from biofuel combustion. Environ Sci Technol 35(10):2100–2107

    Article  Google Scholar 

  • Verhaart P (1982) On designing woodstoves. Proc Indian Acad Sci (Engg Sci) 5:287

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sat Ghosh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumber, S., Ghosh, S., Orr, A. et al. On the microphysical processing of aged combustion aerosols impacting warm rain microphysics over Asian megacities. Theor Appl Climatol 139, 1479–1491 (2020). https://doi.org/10.1007/s00704-019-03042-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-019-03042-0

Keywords

Navigation