Distinguishing changes in the Hadley circulation edge

Abstract

The studies on poleward expansion of the Hadley circulation have mainly concentrated on linear trends with global warming. There is no consensus on how the edge of the Hadley circulation has been affected by the dynamical linkage to causes of change. Here, this study strives to make a robust assessment of the changes in the edge latitude of the Hadley circulation by comparing two reanalysis datasets and two theoretical models, namely the Held and Hou. J Atmos Res 37: 515-533; (1980) model (HH80) and Held (2000) model (He00). A poleward shift in both hemispheres emerged after the mid-1990s in the two reanalysis datasets, except for the Northern Hemisphere from ERA-Interim. Comparing the edge latitudes of the two reanalysis datasets, HH80 (He00) is seen to be out of phase (in-phase) in the Hadley circulation edge. He00 only shows interdecadal change regarding the poleward expansion of the Hadley circulation. We found that the dominant factors affecting change in the edge latitude of the Hadley circulation were the subtropical static stability and subtropical tropopause height. The changes in the Hadley circulation in the Northern Hemisphere (Southern Hemisphere) are associated with negative ENSO and positive AO (positive SAM).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

ERA-INTERIM data can be found at https://www.estl.noaa.gov/psd/data/~reanalysis2.html/ and NCEP-DOE reanalysis2 can be found at https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.pressure.html.

References

  1. Adam O, Schneider T, Harnik N (2014) Role of changes in mean temperatures versus temperature gradients in the recent widening of the Hadley circulation. J Clim 27:7450–7461

    Google Scholar 

  2. Becker E, Schmitz G, Geprags R (1997) The feedback of mid-latitude waves onto the Hadley cell in a simple general circulation model. Tellus Ser A 49:182–199

    Google Scholar 

  3. Birner T (2010) Recent widening of the tropical belt from global tropopause statistics: sensitivities. J Geophys Res Atmospheres 115(D23)

  4. Caballero R (2007) Role of eddies in the interannual variability of Hadley cell strength. Geophys Res Lett 34:L22705

    Google Scholar 

  5. Caballero R (2008) Hadley cell bias in climate models linked to extratropical eddy stress. Geophys Res Lett. https://doi.org/10.1029/2008GL035084

  6. Ceppi P, Hartmann DL (2013) On the speed of the eddy-driven jet and the width of the Hadley cell in the Southern Hemisphere. J Clim 26:3450–3465

    Google Scholar 

  7. D’Agostino R, Lionello P (2017) Evidence of global warming impact on the evolution of the Hadley circulation in ECMWF centennial reanalyses. Clim Dyn 48:3047–3060

    Google Scholar 

  8. D'Agostino R, Lionello P, Adam O, Schneider T (2017) Factors controlling Hadley circulation changes from the Last Glacial Maximum to the end of the 21st century. Geophys Res Lett 44:8585–8591

    Google Scholar 

  9. Davis NA, Davis SM (2018) Reconciling Hadley cell expansion trend estimated in reanalysis. Geophy Res Lett. https://doi.org/10.1029/2018GL079593

  10. Davis SM, Rosenlof KH (2012) A multidiagnostic intercomparison of tropical-width time series using reanalyses and satellite observations. J Clim 25:1061–1078

    Google Scholar 

  11. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Google Scholar 

  12. Dima IM, Wallace JM (2003) On the seasonality of the Hadley cell. J Atmos Sci 60:1522–1527

    Google Scholar 

  13. Feng J, Li JP (2013) Contrasting impacts of two types of ENSO on the boreal spring Hadley circulation. J Clim 26:4773–4789

    Google Scholar 

  14. Feng J, Li JP, Xie F (2013) Long-term variation of the principal mode of boreal spring Hadley circulation linked to SST over the Indo-Pacific warm pool. J Clim 26:532–544

    Google Scholar 

  15. Frierson DMW (2006) Robust increases in midlatitude static stability in simulations of global warming. Geophys Res Lett. https://doi.org/10.1029/2006GL027504

  16. Frierson DMW, Lu J, Chen G (2007) Width of the Hadley cell in simple and comprehensive general circulation models. Geophys Res Lett. https://doi.org/10.1029/2007GL031115

  17. Fu Q, Johanson CM, Wallace JM, Reichler T (2006) Enhanced mid-latitude tropospheric warming in satellite measurements. Science 312:1179

    Google Scholar 

  18. Garfinkel CI, Waugh EW, Polvani LM (2015) Recent Hadley cell expansion: the role of internal atmospheric variability in reconciling modeled and observed trends. Geophys Res Lett 42:10824–10831

    Google Scholar 

  19. Grotjahn R (1993) Global atmosphere circulations-observations and theories. Oxford University Press, Oxford, pp 249–264

    Google Scholar 

  20. Hare SHE, James IN (2001) Baroclinic developments in jet entrances and exits I: linear normal modes. Q J R Meteorol Soc 127:1293–1303

    Google Scholar 

  21. Held IM (2000) The general circulation of the atmosphere Proc. Geophysical Fluid Dynamics Program Woods Hole, MA, Woods Hole Oceanographic Institute 1–70 https://www.gfdl.noaa.gov/wp-content/uploads/files/user_files/ih/lectures/woods_hole.pdf

  22. Held IM, Hou AY (1980) Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J Atmos Res 37:515–533

    Google Scholar 

  23. Holton JR (1994) An introduction to dynamic meteorology. Academic Press, New York

    Google Scholar 

  24. Hu Y, Fu Q (2007) Observed poleward expansion of the Hadley circulation since 1979. Atmos Chem Phys 7:5229–5236

    Google Scholar 

  25. Huang F, Zhou F, England MH (2004) Atmospheric circulation associated with anomalous variations in North Pacific wintertime blocking. Mon Wea Rev 132:1049–1064

    Google Scholar 

  26. Johanson CM, Fu Q (2006) Hadley cell widening: model simulations versus observations. J Clim 22:2713–2725

    Google Scholar 

  27. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Google Scholar 

  28. Kang SM, Lu J (2012) Expansion of the Hadley cell under global warming: winter versus summer. J Clim 25:8387–8393

    Google Scholar 

  29. Kang SM, Polvani LM, Fyfe JC, Sigmond M (2011) Impact of polar ozone depletion on subtropical precipitation. Science 33:951–954

    Google Scholar 

  30. Kim H-K, Lee S (2001) Hadley cell dynamics in a primitive equation model. part II: Nonaxisymmetric flow. J Atmos Sci 58:2859–2871

    Google Scholar 

  31. Korty RL, Schneider T (2008) Extent of Hadley circulations in dry atmospheres. Geophys Res Lett. https://doi.org/10.1029/2008GL03584

  32. Levine XJ, Schneider T (2011) Response of the Hadley circulation to climate change in an aquaplanet GCM coupled to a simple representation of ocean heat transport. J Atmos Sci 68:769–783

    Google Scholar 

  33. Levine XJ, Schneider T (2015) Baroclinic eddies and the extent of the Hadley circulation: an idealized GCM study. J Atmos Sci 72:2744–2761

    Google Scholar 

  34. Liu J, Song M, Hu Y, Ren W (2012) Changes in the strength and width of the Hadley circulation since 1871. Clim Past 8:1169–1175

    Google Scholar 

  35. Lorenz EN (1957) Static stability and atmospheric energy, Massachusetts Institute of Technology Department of Meteorology science report. no. 9 Cambridge Mass (OCoLC) 647423536

  36. Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Let. https://doi.org/10.1029/2006GL028443

  37. Lu J, Chen G, Frierson DMW (2008) Response of the zonal mean atmospheric circulation to El Niño versus global warming. J Clim 21:5835–5851

    Google Scholar 

  38. Ma J, Li JP (2008) The principal modes of variability of the boreal winter Hadley cell. Geophys Res Lett 35:L01808

    Google Scholar 

  39. Marshall GJ (2003) Trends in the Southern Annular Mode from observations and reanalyses. J Clim 16:4134–4143

    Google Scholar 

  40. Nguyen H, Evans A, Lucas C, Smith I, Timbal B (2013) The Hadley circulation in reanalyses: climatology, variability, and change. J Clim 26:3357–3376

    Google Scholar 

  41. O’Gorman PA (2011) The effective static stability experienced by eddies in a moist atmosphere. J Atmos Sci 68:75–90

    Google Scholar 

  42. Oort AH, Yienger JJ (1996) Observed interannual variability in the Hadley circulation and its connection to ENSO. J Clim 9:2751–2767

    Google Scholar 

  43. Prabhu A, Kripalani R, Oh J, Bhaskar P (2017) Can the Southern Annular Mode influence the Korean summer monsoon rainfall? Asia-Pacific J Atmos Sci 53:217–228. https://doi.org/10.1007/s13143-017-0029-0

    Article  Google Scholar 

  44. Reichler T, Dameris M, Sausen R (2003) Determining the tropopause height from gridded data. Geophys Res Lett. https://doi.org/10.1029/2003GL018240

    Google Scholar 

  45. Santer BD, Wehner MF, Wigley RML et al (2003) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301:479–483

    Google Scholar 

  46. Sausen R, Santer BD (2003) Use of changes in tropopause height to detect human influences on climate. Meteorol Zeitschrift 12:131–136

    Google Scholar 

  47. Schneider T, Walker CC (2008) Scaling laws and regime transitions of macroturbulence in dry atmospheres. J Atmos Sci 65:2153–2173

    Google Scholar 

  48. Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nature geoscience 1:21

    Google Scholar 

  49. Seo K-H, Frierson DMF, Son J-H (2014) A mechanism for future changes in Hadley circulation strength in CMIP5 climate change simulations. Geophys Res Lett. https://doi.org/10.1002/2014GL060868

    Google Scholar 

  50. Solman SA, Orlanski I (2014) Poleward shift and change of frontal activity in the Southern Hemisphere over the last 40 years. J Atmos Sci 71:539–552

    Google Scholar 

  51. Son S-W et al (2010) Impact of stratospheric ozone on Southern Hemisphere circulation change: a multimodel assessment. J Geophys Res. https://doi.org/10.1029/2010JD014271

  52. Stachnik JP, Schumacher C (2011) A comparison of the Hadley circulation in modern reanalyses. J Geophys Res 116:D22102. https://doi.org/10.1029/2011JD016677

    Article  Google Scholar 

  53. Tao L, Hu Y, Liu J (2016) Anthropogenic forcing on the Hadley circulation in CMIP5 simulations. Clim Dyn 46:3337–3350

    Google Scholar 

  54. Vallis GK, Zurita-Gotor P, Cairns C, Kidston J (2015) Response of the large-scale structure of the atmosphere to global warming. Quart J Roy Meteor Soc 141:1479–1501

    Google Scholar 

  55. Walker CC, Schneider T (2006) Eddy influences on Hadley circulations: simulations with an idealized GCM. J Atmos Sci 63:3333–3350

    Google Scholar 

  56. Wang C (2002) Atmospheric circulation cells associated with the El Niño–Southern Oscillation. J Clim 15:399–419

    Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) through a Global Research Laboratory (GRL) grant (MEST 2011-0021927) and the Institute for Basic Science (project code IBS-R028-D1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kyung-Ja Ha.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moon, H., Ha, KJ. Distinguishing changes in the Hadley circulation edge. Theor Appl Climatol 139, 1007–1017 (2020). https://doi.org/10.1007/s00704-019-03017-1

Download citation

Keywords

  • Hadley circulation
  • Hadley circulation edge
  • Tropopause height
  • Static stability
  • Held model