Performance evaluation of satellite-based rainfall products on hydrological modeling for a transboundary catchment in northwest Africa

Abstract

The scarcity of rainfall data is one of the main problems affecting the use of hydrological models. Several model satellite-based rainfall estimates (SREs) have been developed to provide an alternative to poorly or ungauged basins. The aim of this work was to evaluate the suitability of SREs for hydrological modeling using a semi-distributed model in the transboundary basin of Medjerda, shared by Tunisia and Algeria. Two satellite-based rainfall products (PERSIANN-CDR and CHIRPSv2) were first compared to rain gauge observations based on sub-basin and point-to-pixel analysis. The selected SREs products were then used as inputs to simulate discharge at a daily time-step over the 1996–2016 period. The simulated streamflows were compared to data measured at four runoff gauging stations and at the outlet of two dams. It was first shown that both SRE products perform weakly at daily scale but that the CHIRPSv2 product performs better at monthly scale. Second, comparison at sub-basin scale led to a better correlation with rain gauge observations than point-to-pixel analysis. Third, direct sampling can be reliably used to fill gaps in discharge time series by using auxiliary stations highly correlated with the target station. Finally, the CHIPRSv2 daily satellite rainfall product is more efficient and more suitable than the PERSIANN-CDR product for hydrological modeling. Thus, CHIRPSv2 can be used as an alternative or as a complementary source of information to simulate hydrological models in arid and semi-arid regions and can successfully solve the issue of missing rainfall data in transboundary catchments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abimbola OP, Wenninger J, Venneker R, Mittelstet AR (2017) The assessment of water resources in ungauged catchments in Rwanda. J Hydrol Reg Stud 13:274–289. https://doi.org/10.1016/j.ejrh.2017.09.001

    Article  Google Scholar 

  2. Agutu NO, Awange JL, Zerihun A, Ndehedehe CE, Kuhn M, Fukuda Y (2017) Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens Environ 194:287–302. https://doi.org/10.1016/j.rse.2017.03.041

    Article  Google Scholar 

  3. Allen RG, Pereira, LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements. FAO irrigation and drainage paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy

  4. Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. Bull Am Meteorol Soc 34(1):73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

    Article  Google Scholar 

  5. Artan G, Gadain H, Smith JL, Asante K, Bandaragoda CJ, Verdin JP (2007) Adequacy of satellite derived rainfall data for stream flow modeling. Nat Hazards 43:167–185. https://doi.org/10.1007/s11069-007-9121-6

    Article  Google Scholar 

  6. Ashouri H, Hsu KL, Sorooshian S, Braithwaite DK (2015) PERSIANN-CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull Am Meteorol Soc 96:69–83. https://doi.org/10.1175/BAMS-D-13-00068.1

    Article  Google Scholar 

  7. Ashouri H, Nguyen P, Thorstensen A, Hsu KL, Sorooshian S, Braithwaite DK (2016) Assessing the efficacy of high-resolution satellite-based PERSIANN-CDR precipitation product in simulating streamflow. J Hydrometeorol 17:2061–2076

    Article  Google Scholar 

  8. Baez-Villanueva OM, Zambrano-Bigiarini M, Ribbe L, Nauditt A, Giraldo-Osorio JD, Thinh NX (2018) Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmos Res 213:34–50. https://doi.org/10.1016/J.ATMOSRES.2018.05.011

    Article  Google Scholar 

  9. Bayissa Y, Tadesse T, Demisse G, Shiferaw A (2017) Evaluation of satellite-based rainfall estimates and application to monitor meteorological drought for the Upper Blue Nile Basin, Ethiopia. Remote Sens 9:669. https://doi.org/10.3390/rs9070669

    Article  Google Scholar 

  10. Beria H, Nanda T, Bisht DS, Chatterjee C (2017) Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale. Hydrol Earth Syst Sci 21:6117–6134. https://doi.org/10.5194/hess-21-6117-2017

    Article  Google Scholar 

  11. Bitew MM, Gebremichael M (2011) Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour Res 47:1–11. https://doi.org/10.1029/2010WR009917

    Article  Google Scholar 

  12. Bouraoui F, Benabdallah S, Jrad A, Bidoglio G (2005) Application of the SWAT model on the Medjerda river basin (Tunisia). Phys Chem Earth 30:497–507. https://doi.org/10.1016/j.pce.2005.07.004

    Article  Google Scholar 

  13. Chebbi A, Kebaili Bargaoui Z, Abid N, da Conceição Cunha M (2017) Optimization of a hydrometric network extension using specific flow, kriging and simulated annealing. J Hydrol 555:971–982. https://doi.org/10.1016/j.jhydrol.2017.10.076

    Article  Google Scholar 

  14. Cohen Liechti T, Matos J, Boillat JL, Schleiss A (2012) Comparison and evaluation of satellite derived precipitation products for hydrological modeling of the Zambezi River basin. Hydrol Earth Syst Sci 16(2):489–500. https://doi.org/10.5194/hess-16-489-2012

    Article  Google Scholar 

  15. Cornelissen T, Diekkrüger B, Giertz S (2013) A comparison of hydrological models for assessing the impact of land use and climate change on discharge in a tropical catchment. J Hydrol 498:221–236. https://doi.org/10.1016/j.jhydrol.2013.06.016

    Article  Google Scholar 

  16. Dakhlaoui H, Ruelland D, Tramblay Y, Bargaoui Z (2017) Evaluating the robustness of conceptual rainfall-runoff models under climate variability in northern Tunisia. J Hydrol 550:201–217. https://doi.org/10.1016/j.jhydrol.2017.04.032

    Article  Google Scholar 

  17. Dembélé M, Zwart SJ (2016) Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. Int J Remote Sens 37:3995–4014. https://doi.org/10.1080/01431161.2016.1207258

    Article  Google Scholar 

  18. Dembélé M, Oriania F, Tumbulto, Mariéthoz G, Schaefli B (2019) Gap-filling of daily streamflow timeseries using direct sampling in various hydroclimatic settings. J Hydrol 569:573–586. https://doi.org/10.1016/j.jhydrol.2018.11.076

    Article  Google Scholar 

  19. DHI (2004) Mike-Basin description. Danish Hydraulics Institute, Copenhagen

    Google Scholar 

  20. Dhib S, Mannaerts CM, Bargaoui Z, Retsios V, Maathuis BH (2017) Evaluating the MSG satellite multi-sensor precipitation estimate for extreme rainfall monitoring over northern Tunisia. Weather Clim Extrem 16:14–22. https://doi.org/10.1016/j.wace.2017.03.002

    Article  Google Scholar 

  21. Feldman AD (2000) Hydrologic modeling system HEC-HMS, technical reference manual. U.S. Army Corps of Engineers, Hydrologic Engineering Center, HEC, Davis

    Google Scholar 

  22. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations - a new environmental record for monitoring extremes. Sci Data 2:1–21. https://doi.org/10.1038/sdata.2015.66

    Article  Google Scholar 

  23. Green WH, Ampt G (1911) Studies of soil physics, part I – the flow of air and water through soils. J Agric Sci 4(1):1–24

    Article  Google Scholar 

  24. Guermazi E, Milano M, Reynard E, Zairi M (2019) Impact of climate change and anthropogenic pressure on the groundwater resources in arid environment. Mitig Adapt Strateg Glob Chang 24(1):73–92. https://doi.org/10.1007/s11027-018-9797-9

    Article  Google Scholar 

  25. Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol 377:80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003

    Article  Google Scholar 

  26. Halwatura D, Najim MMM (2013) Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environ Model Softw 46:155–162

    Article  Google Scholar 

  27. Hassaballah K, Mohamed Y, Uhlenbrook S, Biro K (2017) Analysis of streamflow response to land use and land cover changes using satellite data and hydrological modelling: case study of Dinder and Rahad tributaries of the Blue Nile (Ethiopia-Sudan). Hydrol Earth Syst Sci 21:5217–5242. https://doi.org/10.5194/hess-21-5217-2017

    Article  Google Scholar 

  28. Hong Y, Hsu KL, Moradkhani H, Sorooshian S (2006) Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour Res 42:1–15. https://doi.org/10.1029/2005WR004398

    Article  Google Scholar 

  29. Hrachowitz M, Savenije HHG, Blöschl G, McDonnell JJ, Sivapalan M, Pomeroy JW, Arheimer B, Blume T, Clark MP, Ehret U, Fenicia F, Freer JE, Gelfan A, Gupta HV, Hughes DA, Hut RW, Montanari A, Pande S, Tetzlaff D, Troch PA, Uhlenbrook S, Wagener T, Winsemius HC, Woods RA, Zehe E, Cudennec C (2013) A decade of predictions in ungauged basins (PUB)-a review. Hydrol Sci J 58:1198–1255. https://doi.org/10.1080/02626667.2013.803183

    Article  Google Scholar 

  30. Kling H, Fuchs M, Paulin M (2012) Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J Hydrol 24–425:264–277

    Article  Google Scholar 

  31. Lazri M, Ameur S (2016) A satellite rainfall retrieval technique over northern Algeria based on the probability of rainfall intensities classification from MSG-SEVIRI. J Atmos Sol-Terr Phy 147:106-120

  32. Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res 46(W11536):1–14

    Google Scholar 

  33. Meenu R, Rehana S, Mujumdar PP (2013) Assessment of hydrologic impacts of climate change in Tunga-Bhadra river basin, India with HEC-HMS and SDSM. Hydrol Process 27:1572–1589. https://doi.org/10.1002/hyp.9220

    Article  Google Scholar 

  34. Meng J, Li L, Hao Z, Wang J, Shao Q (2014) Suitability of TRMM satellite rainfall in driving a distributed hydrological model in the source region of Yellow River. J Hydrol 509:320–332. https://doi.org/10.1016/j.jhydrol.2013.11.049

    Article  Google Scholar 

  35. Miao C, Ashouri H, Hsu K-L, Sorooshian S, Duan Q (2015) Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J Hydrometeorol 16:1387–1396. https://doi.org/10.1175/JHM-D-14-0174.1

    Article  Google Scholar 

  36. Milano M, Ruelland D, Dezetter A, Fabre J, Ardoin-Bardin S, Servat E (2013) Modeling the current and future capacity of water resources to meet water demands in the Ebro basin. J Hydrol 500:114–126. https://doi.org/10.1016/j.jhydrol.2013.07.010

    Article  Google Scholar 

  37. Mjejra M (2015) Etude de l’évapotranspiration dans le bassin versant de Mejerda (en Tunisie): apport de la télédétection satellitaire et des Systèmes d’Information Géographique. PhD, thesis, University of Rennes 2, France. 299 p. Available at: https://tel.archives-ouvertes.fr/tel-01281636/file/2015theseMjejraM.pdf

  38. Moriasi DN, Arnold JG, Van Liew MW et al (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900. https://doi.org/10.13031/2013.23153

    Article  Google Scholar 

  39. Muthoni FK, Odongo VO, Ochieng J, Mugalavai EM, Mourice SK, Hoesche-Zeledon I, Mwila M, Bekunda M (2018) Long-term spatial-temporal trends and variability of rainfall over Eastern and Southern Africa. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2712-1

  40. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I — A discussion of principles. J Hydrol 10 (3):282-290

  41. Nauditt A, Birkel C, Soulsby C, Ribbe L (2017) Conceptual modelling to assess the influence of hydro-climatic variability on runoff processes in data scarce semi-arid Andean catchments. Hydrol Sci J 62:515–532. https://doi.org/10.1080/02626667.2016.1240870

    Article  Google Scholar 

  42. Nguyen TH, Masih I, Mohamed YA, Van Der Zaag P (2018) Validating rainfall-runoff modelling using satellite-based and reanalysis precipitation products in the Sre Pok catchment, the Mekong River basin. Geosciences 8(5):164–184. https://doi.org/10.3390/geosciences8050164

    Article  Google Scholar 

  43. Nijzink RC, Almeida S, Pechlivanidis IG, Capell R, Gustafssons D, Arheimer B, Parajka J, Freer J, Han D, Wagener T, Nooijen RRP, Savenije HHG, Hrachowitz M (2018) Constraining conceptual hydrological models with multiple information sources. Water Resour Res 54(10):8332–8362. doi: org/. https://doi.org/10.1029/2017WR021895

    Article  Google Scholar 

  44. O’donnell T (1985) A direct three-parameter muskingum procedure incorporating lateral inflow. Hydrol Sci J 30:479–496. https://doi.org/10.1080/02626668509491013

    Article  Google Scholar 

  45. Oriani F, Straubhaar J, Renard P, Mariethoz G (2014) Simulation of rainfall time series from different climatic regions using the direct sampling technique. Hydrol Earth Syst Sci 18 (8):3015-3031

  46. Oriani F, Borghi A, Straubhaar J, Mariethoz G, Renard P (2016) Missing data simulation inside flow rate time-series using multiple-point statistics. Environ Model Softw 86:264–276. https://doi.org/10.1016/j.envsoft.2016.10.002

    Article  Google Scholar 

  47. Orth R, Staudinger M, Seneviratne SI, Seibert J, Zappa M (2015) Does model performance improve with complexity? A case study with three hydrological models. J Hydrol 523:147–159

    Article  Google Scholar 

  48. Paredes Trejo FJ, Barbosa HA, Peñaloza-Murillo MA et al (2016) Intercomparison of improved satellite rainfall estimation with CHIRPS gridded product and rain gauge data over Venezuela. Atmosfera 29:323–342. https://doi.org/10.20937/ATM.2016.29.04.04

    Article  Google Scholar 

  49. Perrin C, Michel C, Andréassian V (2001) Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments. J Hydrol 242(2001):275–301

    Article  Google Scholar 

  50. Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279:275–289. https://doi.org/10.1016/S0022-1694(03)00225-7

    Article  Google Scholar 

  51. Presti RL, Barca E, Passarella G (2010) A methodology for treating missing data applied to daily rainfall data in the Candelaro River basin (Italy). Environ Monit Assess 160:1–22. https://doi.org/10.1007/s10661-008-0653-3

    Article  Google Scholar 

  52. Rawls WJ, Brakensiek DL, Saxton KE (1982) Estimation of soil water properties. Trans ASAE 25:1316–1320

    Article  Google Scholar 

  53. Refsgaard JC, Knudsen J (1996) Operational validation and intercomparison of different types of hydrological models. Water Resour Res 32:2189–2202. https://doi.org/10.1029/96WR00896

    Article  Google Scholar 

  54. Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333. https://doi.org/10.1063/1.1745010

    Article  Google Scholar 

  55. Rodier JA, Colombani J, Claude JKR (1981) Monographies hydrologiques: Le bassin de la Medjerdah. ORSTOM, Paris

    Google Scholar 

  56. Ruelland D, Ardoin-Bardin S, Collet L, Roucou P (2012) Simulating future trends in hydrological regime of a large Sudano-Sahelian catchment under climate change. J Hydrol 424-425:207–216. https://doi.org/10.1016/j.jhydrol.2012.01.002

    Article  Google Scholar 

  57. Sattari MT, Rezazadeh-Joudi A, Kusiak A (2017) Assessment of different methods for estimation of missing data in precipitation studies. Hydrol Res 48(4):1032–1044. https://doi.org/10.2166/nh.2016.364

    Article  Google Scholar 

  58. Seibert J (2002) HBV Light Version 2, User’s Manual. Department of Forest Engineering Corvallis, Oregon State University; Department of Earth Science, Hydrology, Uppsala University, Corvallis, OR; Uppsala

    Google Scholar 

  59. Soualmia A, Gharbi M (2014) Tests de simulations des crues éclair dans le bassin versant de la Medjerda (Tunisie). Leban Sci J 15(2):13–24

    Google Scholar 

  60. Soulis KX, Valiantzas JD (2012) SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds – the two-CN system approach. Soil Conserv Hydrol Earth Syst Sci 16:1001–1015. https://doi.org/10.5194/hess-16-1001-2012

    Article  Google Scholar 

  61. Stisen S, Sandholt I (2010) Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modelling. Hydrol Process 24:879–891. https://doi.org/10.1002/hyp.7529

    Article  Google Scholar 

  62. Straubhaar J (2017) DeeSse user’s guide. CHYN–stochastic hydrogeology and geostatistics. University of Neuchâtel, Switzerland, p 36

    Google Scholar 

  63. Su F, Hong Y, Lettenmaier DP (2008) Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J Hydrometeorol 9:622–640. https://doi.org/10.1175/2007JHM944.1

    Article  Google Scholar 

  64. Tegegne G, Park DK, Kim YO (2017) Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. J Hydrol Reg Stud 14:49–66. https://doi.org/10.1016/j.ejrh.2017.10.002

    Article  Google Scholar 

  65. Thiemig V,  Rojas R, Zambrano-Bigiarini M, Levizzani V, De Roo A (2012) Validation of Satellite-Based Precipitation Products over Sparsely Gauged African River Basins. J Hydrometeorol 13 (6):1760-1783

  66. Thiemig V, Rojas R, Zambrano-Bigiarini M, De Roo A (2013) Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. J Hydrol 499:324–338. https://doi.org/10.1016/j.jhydrol.2013.07.012

    Article  Google Scholar 

  67. Toté C, Patricio D, Boogaard H, van der Wijngaart R, Tarnavsky E, Funk C (2015) Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sens 7:1758–1776. https://doi.org/10.3390/rs70201758

    Article  Google Scholar 

  68. Tramblay Y, Ruelland D, Hanich L, Dakhlaoui H (2016) Hydrological impacts of climate change in North African countries: the Mediterranean region under climate change: a scientific update. IRD, Marseille

    Google Scholar 

  69. Tuo Y, Duan Z, Disse M, Chiogna G (2016) Evaluation of precipitation input for SWAT modeling in alpine catchment: a case study in the Adige river basin (Italy). Sci Total Environ 573:66–82. https://doi.org/10.1016/j.scitotenv.2016.08.034

    Article  Google Scholar 

  70. US SCS (1986) Technical report 55. U. S. Department of Agriculture, Washington

    Google Scholar 

  71. USACE (1998) HEC-1 flood hydrograph package user’s manual. Davis, Hydrologic Engineering Center (HEC)

    Google Scholar 

  72. USDA-NRCS (2010) National Engineering Handbook. Part 630 hydrology. Cap. 15: time of concentration, Washington

  73. Verma AK, Jha MK, Mahana RK (2009) Evaluation of HEC-HMS and WEPP for simulating watershed runoff using remote sensing and geographical information system. Paddy Water Environ 8(2):131–144. https://doi.org/10.1007/s10333-009-0192-8

    Article  Google Scholar 

  74. Yilmaz KK, Hogue TS, Hsu KL, Sorooshian S, Gupta HV, Wagener T (2005) Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting. J Hydrometeorol 6(4):497–517. https://doi.org/10.1175/JHM431.1

    Article  Google Scholar 

  75. Zhu Q, Xuan W, Liu L, Xu YP (2016) Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China. Hydrol Process 30:3061–3083. https://doi.org/10.1002/hyp.10846

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Fabio Oriani for providing the code to simulate the incomplete flow time series, Julien Straubhaar for providing the DeeSse license, Daphne Goodfellow for English proofreading, and the anonymous reviewer for his relevant comments that helped improving the paper. The authors are also grateful for the support and data provided by the General Directorate of Water Resources and the General Directorate of Dams and Major Hydraulic Works of the Tunisian Ministry of Agriculture.

Funding

The research was supported by the Swiss government as part of a postgraduate scholarship for foreign researchers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emna Guermazi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guermazi, E., Milano, M. & Reynard, E. Performance evaluation of satellite-based rainfall products on hydrological modeling for a transboundary catchment in northwest Africa. Theor Appl Climatol 138, 1695–1713 (2019). https://doi.org/10.1007/s00704-019-02928-3

Download citation