A comparative sensitivity analysis of human thermal comfort indices with generalized additive models

A Correction to this article is available

This article has been updated

Abstract

This paper presents a comparative sensitivity analysis of six of the widely used human thermal comfort indices. The analysis consists of the evaluation of the effect of indices ‘input parameters’ variation and change rate on the output of human energy balance and simple thermohygrometric indices. For the implementation of the sensitivity analysis, the generalized additive model’s methodology is applied on a long period and high temporal resolution dataset from Athens, Greece. The results indicate that the proposed methodology of generalized additive models is adequate for such an analysis. Moreover, this research revealed the differences in index behaviour. The thermohygrometric indices (i.e. Thermohygrometric Index and HUMIDEX) exhibit a clearly deferent sensitivity pattern in comparison to the human energy balance indices (i.e. physiologically equivalent temperature (PET), perceived temperature (PT), modified physiologically equivalent temperature (mPET) and Universal Thermal Comfort Index (UTCI)), and they are incapable to handle the complexity of the atmospheric stimuli on human thermal perception. On the other hand, human energy balance indices can follow the input parameters fluctuations but with different grades of sensitivity. PET and mPET present a moderate and gradual sensitivity both in terms of the input variation and input change rate. PT is the less sensitive index among the human energy balance investigated, but it is able to follow efficiently the input parameters variation during the measurements period. Moreover, UTCI is the most sensitive among all the selected indices for low values (and low change rate) of the input parameters but for high input parameter values (except the wind speed), UTCI exhibits a low sensitivity in comparison to the other human energy balance indices. In terms of sensitivity, the most influential input parameter is global radiation, and the less influential is vapour pressure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Change history

  • 19 June 2019

    The original version of this article unfortunately contained a mistake.

References

  1. Aalto J, Riihimäki H, Meineri E, Hylander K, Luoto M (2017) Revealing topoclimatic heterogeneity using meteorological station data. Int J Climatol 37:544–556. https://doi.org/10.1002/joc.5020

    Article  Google Scholar 

  2. Akimoto T, ichi TS, Yanai T, Sasaki M (2010) Thermal comfort and productivity - evaluation of workplace environment in a task conditioned office. Build Environ 45:45–50. https://doi.org/10.1016/J.BUILDENV.2009.06.022

    Article  Google Scholar 

  3. Algeciras JAR, Matzarakis A (2016) Quantification of thermal bioclimate for the management of urban design in Mediterranean climate of Barcelona, Spain. Int J Biometeorol 60:1261–1270. https://doi.org/10.1007/s00484-015-1121-8

    Article  Google Scholar 

  4. Błażejczyk K, Broede P, Fiala D, et al (2010) Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale. Misc Geogr 14:91–102

    Google Scholar 

  5. Blazejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56:515–535. https://doi.org/10.1007/s00484-011-0453-2

    Article  Google Scholar 

  6. Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56:481–494. https://doi.org/10.1007/s00484-011-0454-1

    Article  Google Scholar 

  7. Charalampopoulos I, Tsiros I, Chronopoulou-Sereli A, Matzarakis A (2013) Analysis of thermal bioclimate in various urban configurations in Athens, Greece. Urban Ecosyst 16:217–233. https://doi.org/10.1007/s11252-012-0252-5

    Article  Google Scholar 

  8. Charalampopoulos I, Tsiros I, Chronopoulou-Sereli A, Matzarakis A (2015) A note on the evolution of the daily pattern of thermal comfort-related micrometeorological parameters in small urban sites in Athens. Int J Biometeorol 59:1223–1236. https://doi.org/10.1007/s00484-014-0934-1

    Article  Google Scholar 

  9. Charalampopoulos I, Nastos PT, Didaskalou E (2017) Human thermal conditions and north Europeans’ web searching behavior (Google Trends) on mediterranean touristic destinations. Urban Sci 1:8. https://doi.org/10.3390/urbansci1010008

    Article  Google Scholar 

  10. Chen A, Chang VW-C (2012) Human health and thermal comfort of office workers in Singapore. Build Environ 58:172–178. https://doi.org/10.1016/J.BUILDENV.2012.07.004

    Article  Google Scholar 

  11. Chen Y-C, Matzarakis A (2017) Modified physiologically equivalent temperature—basics and applications for western European climate. Theor Appl Climatol 132:1–15. https://doi.org/10.1007/s00704-017-2158-x

    Article  Google Scholar 

  12. Cheng Y, Niu J, Gao N (2012) Thermal comfort models: a review and numerical investigation. Build Environ 47:13–22. https://doi.org/10.1016/j.buildenv.2011.05.011

    Article  Google Scholar 

  13. Coccolo S, Kämpf J, Scartezzini J-L, Pearlmutter D (2016) Outdoor human comfort and thermal stress: a comprehensive review on models and standards. Urban Clim 18:33–57. https://doi.org/10.1016/j.uclim.2016.08.004

    Article  Google Scholar 

  14. Conti S, Meli P, Minelli G, Solimini R, Toccaceli V, Vichi M, Beltrano C, Perini L (2005) Epidemiologic study of mortality during the Summer 2003 heat wave in Italy. Environ Res 98:390–399. https://doi.org/10.1016/j.envres.2004.10.009

    Article  Google Scholar 

  15. Correa E, Ruiz MA, Canton A, Lesino G (2012) Thermal comfort in forested urban canyons of low building density. An assessment for the city of Mendoza, Argentina. Build Environ 58:219–230. https://doi.org/10.1016/j.buildenv.2012.06.007

    Article  Google Scholar 

  16. Damiati SA, Zaki SA, Rijal HB, Wonorahardjo S (2016) Field study on adaptive thermal comfort in office buildings in Malaysia, Indonesia, Singapore, and Japan during hot and humid season. Build Environ 109:208–223. https://doi.org/10.1016/J.BUILDENV.2016.09.024

    Article  Google Scholar 

  17. de Freitas CR, Grigorieva EA (2015) A comprehensive catalogue and classification of human thermal climate indices. Int J Biometeorol 59:109–120. https://doi.org/10.1007/s00484-014-0819-3

    Article  Google Scholar 

  18. Desai MS, Dhorde AG (2018) Trends in thermal discomfort indices over western coastal cities of India. Theor Appl Climatol 131:1305–1321. https://doi.org/10.1007/s00704-017-2042-8

    Article  Google Scholar 

  19. Didaskalou E, Nastos PT (2003) The role of climatic and bioclimatic conditions in the development of health tourism product. Anatolia 14:107–126. https://doi.org/10.1080/13032917.2003.9687020

    Article  Google Scholar 

  20. Dominici F, McDermott A, Zeger SL, Samet JM (2002) On the use of generalized additive models in time-series studies of air pollution and health. Am J Epidemiol 156:193–203. https://doi.org/10.1093/aje/kwf062

    Article  Google Scholar 

  21. Eludoyin OM, Adelekan IO, Webster R, Eludoyin AO (2014) Air temperature, relative humidity, climate regionalization and thermal comfort of Nigeria. Int J Climatol 34:2000–2018. https://doi.org/10.1002/joc.3817

    Article  Google Scholar 

  22. Emmanuel R (2005) Thermal comfort implications of urbanization in a warm-humid city: the Colombo Metropolitan Region (CMR), Sri Lanka. Build Environ 40:1591–1601. https://doi.org/10.1016/j.buildenv.2004.12.004

    Article  Google Scholar 

  23. Epstein Y, Moran DS (2006) Thermal comfort and the heat stress indices. Ind Health 44:388–398. https://doi.org/10.2486/indhealth.44.388

    Article  Google Scholar 

  24. Fang Z, Lin Z, Mak CM, Niu J, Tse KT (2018) Investigation into sensitivities of factors in outdoor thermal comfort indices. Build Environ 128:129–142. https://doi.org/10.1016/j.buildenv.2017.11.028

    Article  Google Scholar 

  25. Fanger PO (1970) Thermal comfort. Analysis and applications in environmental engineering. McGraw-Hill Book Company

  26. Ferretti F, Saltelli A, Tarantola S (2016) Trends in sensitivity analysis practice in the last decade. Sci Total Environ 568:666–670. https://doi.org/10.1016/j.scitotenv.2016.02.133

    Article  Google Scholar 

  27. Frey CH, Patil SR (2002) Identification and review of sensitivity analysis methods. Risk Anal 22:553–578. https://doi.org/10.1111/0272-4332.00039

    Article  Google Scholar 

  28. Fröhlich D, Matzarakis A (2016) A quantitative sensitivity analysis on the behaviour of common thermal indices under hot and windy conditions in Doha, Qatar. Theor Appl Climatol 124:179–187. https://doi.org/10.1007/s00704-015-1410-5

    Article  Google Scholar 

  29. Fröhlich D, Gangwisch M, Matzarakis A (2019) Effect of radiation and wind on thermal comfort in urban environments - application of the RayMan and SkyHelios model. Urban Clim 27:1–7. https://doi.org/10.1016/j.uclim.2018.10.006

    Article  Google Scholar 

  30. Goggins WB, Chan EYY, Ng E, Ren C, Chen L (2012) Effect modification of the association between short-term meteorological factors and mortality by urban heat islands in Hong Kong. PLoS One 7:9–14. https://doi.org/10.1371/journal.pone.0038551

    Article  Google Scholar 

  31. Grimmond CSB, King TS, Roth M, Oke TR (1998) Aerodynamic roughness of urban areas derived from wind observations. Bound-Layer Meteorol 89:1–24. https://doi.org/10.1023/A:1001525622213

    Article  Google Scholar 

  32. Hamby DM (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32:135–154. https://doi.org/10.1007/BF00547132

    Article  Google Scholar 

  33. Hastie T (2013) gam: generalized additive models, R package, version 0.98. R Found Stat Comput, Vienna

  34. Hastie T, Tibshirani R (1987) Generalized additive models: some applications. J Am Stat Assoc 82:371–386. https://doi.org/10.1080/01621459.1987.10478440

    Article  Google Scholar 

  35. Havenith G, Fiala D, Błazejczyk K, Richards M, Bröde P, Holmér I, Rintamaki H, Benshabat Y, Jendritzky G (2012) The UTCI-clothing model. Int J Biometeorol 56:461–470. https://doi.org/10.1007/s00484-011-0451-4

    Article  Google Scholar 

  36. Hjort J, Suomi J, Käyhkö J (2016) Extreme urban–rural temperatures in the coastal city of Turku, Finland: quantification and visualization based on a generalized additive model. Sci Total Environ 569–570:507–517. https://doi.org/10.1016/j.scitotenv.2016.06.136

    Article  Google Scholar 

  37. Höppe P (1999) The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. Springer-Verlag

  38. Hu W, Mengersen K, McMichael A, Tong S (2008) Temperature, air pollution and total mortality during summers in Sydney, 1994–2004. Int J Biometeorol 52:689–696. https://doi.org/10.1007/s00484-008-0161-8

    Article  Google Scholar 

  39. Huizenga C, Hui Z, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36:691–699. https://doi.org/10.1016/S0360-1323(00)00061-5

    Article  Google Scholar 

  40. Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56:421–428. https://doi.org/10.1007/s00484-011-0513-7

    Article  Google Scholar 

  41. Kántor N, Unger J (2011) The most problematic variable in the course of human-biometeorological comfort assessment — the mean radiant temperature. Open Geosci 3:90–100. https://doi.org/10.2478/s13533-011-0010-x

    Article  Google Scholar 

  42. Katić K, Li R, Zeiler W (2016) Thermophysiological models and their applications: a review. Build Environ 106:286–300. https://doi.org/10.1016/J.BUILDENV.2016.06.031

    Article  Google Scholar 

  43. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  44. Laschewski G, Jendritzky G (2002) Effects of the thermal environment on human health: an investigation of 30 years of daily mortality data from SW Germany. Clim Res 21:91–103. https://doi.org/10.3354/cr021091

    Article  Google Scholar 

  45. Lin T-P (2009) Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build Environ 44:2017–2026. https://doi.org/10.1016/j.buildenv.2009.02.004

    Article  Google Scholar 

  46. Lin T-P, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52:281–290. https://doi.org/10.1007/s00484-007-0122-7

    Article  Google Scholar 

  47. Lin T-P, Yang S-R, Chen Y-C, Matzarakis A (2018) The potential of a modified physiologically equivalent temperature (mPET) based on local thermal comfort perception in hot and humid regions. Theor Appl Climatol 135:1–4. https://doi.org/10.1007/s00704-018-2419-3

    Article  Google Scholar 

  48. Lipczynska A, Schiavon S, Graham LT (2018) Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics. Build Environ 135:202–212. https://doi.org/10.1016/J.BUILDENV.2018.03.013

    Article  Google Scholar 

  49. Martinelli L, Lin TP, Matzarakis A (2015) Assessment of the influence of daily shadings pattern on human thermal comfort and attendance in Rome during summer period. Build Environ 92:30–38. https://doi.org/10.1016/j.buildenv.2015.04.013

    Article  Google Scholar 

  50. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84. https://doi.org/10.1007/s004840050119

    Article  Google Scholar 

  51. Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54:131–139. https://doi.org/10.1007/s00484-009-0261-0

    Article  Google Scholar 

  52. Mekis É, Vincent LA, Shephard MW, Zhang X (2015) Observed trends in severe weather conditions based on humidex, wind chill, and heavy rainfall events in Canada for 1953–2012. Atmosphere-Ocean 53:383–397. https://doi.org/10.1080/07055900.2015.1086970

    Article  Google Scholar 

  53. Morabito M, Profili F, Crisci A, Francesconi P, Gensini GF, Orlandini S (2012) Heat-related mortality in the Florentine area (Italy) before and after the exceptional 2003 heat wave in Europe: an improved public health response? Int J Biometeorol 56:801–810. https://doi.org/10.1007/s00484-011-0481-y

    Article  Google Scholar 

  54. Moustris K, Tsiros IX, Tseliou A, Nastos P (2018) Development and application of artificial neural network models to estimate values of a complex human thermal comfort index associated with urban heat and cool island patterns using air temperature data from a standard meteorological station. Int J Biometeorol 62:1265–1274. https://doi.org/10.1007/s00484-018-1531-5

    Article  Google Scholar 

  55. Nastos PT, Paliatsos AG, Anthracopoulos MB, Roma ES, Priftis KN (2010) Outdoor particulate matter and childhood asthma admissions in Athens, Greece: a time-series study. Environ Health 9:45. https://doi.org/10.1186/1476-069X-9-45

    Article  Google Scholar 

  56. Nazarian N, Fan J, Sin T, et al (2017) Predicting outdoor thermal comfort in urban environments: a 3D numerical model for standard effective temperature. Urban Clim https://doi.org/10.1016/j.uclim.2017.04.011

    Article  Google Scholar 

  57. Nouri AS, Costa JP, Matzarakis A (2017) Examining default urban-aspect-ratios and sky-view-factors to identify priorities for thermal-sensitive public space design in hot-summer Mediterranean climates: the Lisbon case. Build Environ 126:442–456. https://doi.org/10.1016/J.BUILDENV.2017.10.027

    Article  Google Scholar 

  58. Nouri AS, Charalampopoulos I, Matzarakis A (2018a) Beyond singular climatic variables – identifying the dynamics of wholesome thermo-physiological factors for existing/future human thermal comfort during hot-dry Mediterranean summers. Int J Environ Res Public Health 15:1–25. https://doi.org/10.3390/ijerph15112362

    Article  Google Scholar 

  59. Nouri AS, Costa JP, Santamouris M, Matzarakis A (2018b) Approaches to Outdoor thermal comfort thresholds through public space design: a review. Atmosphere 9:108. https://doi.org/10.3390/atmos9030108

  60. Nouri AS, Fröhlich D, Matos Silva M, Matzarakis A (2018) The impact of Tipuana tipu species on local human thermal comfort thresholds in different Urban canyon cases in Mediterranean climates: Lisbon, Portugal. Atmosphere 9:12https://doi.org/10.3390/atmos9010012

  61. Nouri AS, Lopes A, Costa JP, Matzarakis A (2018d) Confronting potential future augmentations of the physiologically equivalent temperature through public space design: the case of Rossio, Lisbon. Sustain Cities Soc 37:7–25. https://doi.org/10.1016/J.SCS.2017.10.031

    Article  Google Scholar 

  62. Oke TR, Mills G, Christen A, Voogt J (2017) Urban climates. Cambridge University Press

  63. Parsons K (2014) Human thermal environments. CRC Press

  64. Pearce JL, Beringer J, Nicholls N, Hyndman RJ, Tapper NJ (2011) Quantifying the influence of local meteorology on air quality using generalized additive models. Atmos Environ 45:1328–1336. https://doi.org/10.1016/j.atmosenv.2010.11.051

    Article  Google Scholar 

  65. Pianosi F, Beven K, Freer J, Hall JW, Rougier J, Stephenson DB, Wagener T (2016) Sensitivity analysis of environmental models: a systematic review with practical workflow. Environ Model Softw 79:214–232. https://doi.org/10.1016/j.envsoft.2016.02.008

    Article  Google Scholar 

  66. Potchter O, Cohen P, Lin T-PP, Matzarakis A (2018) Outdoor human thermal perception in various climates: a comprehensive review of approaches, methods and quantification. Sci Total Environ 631–632:390–406. https://doi.org/10.1016/j.scitotenv.2018.02.276

    Article  Google Scholar 

  67. Provençal S, Bergeron O, Leduc R, Barrette N (2016) Thermal comfort in Quebec City, Canada: sensitivity analysis of the UTCI and other popular thermal comfort indices in a mid-latitude continental city. Int J Biometeorol 60:591–603. https://doi.org/10.1007/s00484-015-1054-2

    Article  Google Scholar 

  68. Ren C, Tong S (2006) Temperature modifies the health effects of particulate matter in Brisbane, Australia. Int J Biometeorol 51:87–96. https://doi.org/10.1007/s00484-006-0054-7

    Article  Google Scholar 

  69. Ricciu R, Galatioto A, Desogus G, Besalduch LA (2018) Uncertainty in the evaluation of the Predicted Mean Vote index using Monte Carlo analysis. J Environ Manag 223:16–22. https://doi.org/10.1016/J.JENVMAN.2018.06.005

    Article  Google Scholar 

  70. Ruuhela R, Jylhä K, Lanki T, Tiittanen P, Matzarakis A (2017) Biometeorological assessment of mortality related to extreme temperatures in Helsinki region, Finland, 1972–2014. Int J Environ Res Public Health 14:944. https://doi.org/10.3390/ijerph14080944

    Article  Google Scholar 

  71. Salata F, Golasi I, de Lieto Vollaro R, de Lieto Vollaro A (2016) Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Build Environ 96:46–61. https://doi.org/10.1016/J.BUILDENV.2015.11.023

    Article  Google Scholar 

  72. Salata F, Golasi I, Petitti D, de Lieto Vollaro E, Coppi M, de Lieto Vollaro A (2017) Relating microclimate, human thermal comfort and health during heat waves: an analysis of heat island mitigation strategies through a case study in an urban outdoor environment. Sustain Cities Soc 30:79–96. https://doi.org/10.1016/J.SCS.2017.01.006

    Article  Google Scholar 

  73. Saltelli A, Tarantola S, Campolongo F, Ratto M (2004) Sensitivity analysis in practice: a guide to assessing scientific models. John Wiley & Sons

  74. Saltelli A, Ratto M, Andres T, et al (2007) Global sensitivity analysis. The primer. John Wiley & Sons

  75. Santidrián Tomillo P, Saba VS, Lombard CD, Valiulis JM, Robinson NJ, Paladino FV, Spotila JR, Fernández C, Rivas ML, Tucek J, Nel R, Oro D (2015) Global analysis of the effect of local climate on the hatchling output of leatherback turtles. Sci Rep 5:1–12. https://doi.org/10.1038/srep16789

    Article  Google Scholar 

  76. Staiger H, Laschewski G, Grätz A (2012) The perceived temperature – a versatile index for the assessment of the human thermal environment. Part A: scientific basics. Int J Biometeorol 56:165–176. https://doi.org/10.1007/s00484-011-0409-6

    Article  Google Scholar 

  77. Toy S, Yilmaz S (2010) Evaluation of urban–rural bioclimatic comfort differences over a ten–year period in the sample of Erzincan city reconstructed after a heavy earthquake. Atmósfera 23:387–402

    Google Scholar 

  78. Tuller SE (1997) Climatic controls of the cool human thermal sensation in a summertime onshore wind. Int J Biometeorol 41:26–33. https://doi.org/10.1007/s004840050050

    Article  Google Scholar 

  79. Unger J (1999) Comparisons of urban and rural bioclimatological conditions in the case of a Central-European city. Int J Biometeorol 43:139–144. https://doi.org/10.1007/s004840050129

    Article  Google Scholar 

  80. Urban A, Kyselý J (2014) Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. Int J Environ Res Public Health 11:952–967. https://doi.org/10.3390/ijerph110100952

    Article  Google Scholar 

  81. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer

  82. Wickham H, Francois R, Henry L, Müller K (2016) dplyr: a grammar of data manipulation. R package version 0.5. 0

  83. Wood SN (2017) Generalized additive models, 2nd edn. Chapman and Hall/CRC

  84. Wood S (2018) The mgcv package. www. r-project. org

  85. Yang L, Yan H, Lam JC (2014) Thermal comfort and building energy consumption implications – a review. Appl Energy 115:164–173. https://doi.org/10.1016/J.APENERGY.2013.10.062

    Article  Google Scholar 

  86. Zhang W, Du Z, Zhang D et al (2016) Assessing the impact of humidex on HFMD in Guangdong Province and its variability across social-economic status and age groups. Sci Rep 6:1–8. https://doi.org/10.1038/srep18965

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Laboratory of General and Agricultural Meteorology of the Agricultural University of Athens, Greece, for the meteorological dataset and Dr. G. Papadopoulos, Associate Professor of the Agricultural University of Athens, Greece, for his thoughts, comments and suggestions on the mathematic/statistic part of this publication. Also, the author would like to extend his gratitude to Dr. Andre Santos Nouri, Faculty of Architecture, University of Lisbon, Portugal, for the notable contribution to the proofreading and English language polishing of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ioannis Charalampopoulos.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The figures have been re-numbered that changed not only the caption of the figures or the citation in the text but the position of the figures and tables themselves.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Charalampopoulos, I. A comparative sensitivity analysis of human thermal comfort indices with generalized additive models. Theor Appl Climatol 137, 1605–1622 (2019). https://doi.org/10.1007/s00704-019-02900-1

Download citation