Abstract
This analysis of the frequency, intensity, and duration of thermal inversions is based on daily minimum (tn) and maximum (tx) temperatures recorded over 3 years at 16 pairs of data loggers located under forest cover in the Jura Mountains of France. Each pair consists of a logger located at the bottom of a depression and another located higher up either nearby (local site) or more than 40 km away (regional site). The daily frequency of inversions is maximum at local sites for tn (50%) and minimum for tx at regional sites (4%). The maximum intensity of the inversions reaches 15.1 °C for tn and 16.2 °C for tx. The average intensity is about 2 °C: 1.5 °C for tx at local sites and 2.4 °C at regional sites. The duration of inversions is generally short: 60% of them last less than a day. Of the inversions that last for more than 1 day, 15% exceed 3 days and the maximum duration observed is 22 days. The relationship between the diurnal amplitude of temperature and the frequency, intensity, and duration of inversions indicates that mesoscale atmospheric conditions directly influence inversions.











Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alekseychik P, Mammarella I, Launiainen S, Rannik Ü, Vesala T (2013) Evolution of the nocturnal decoupled layer in a pine forest canopy. Agr Forest Meteor 174–175:15–27
Angela M, Rendón JF, Salazar CA, Wirth P, Wirth V (2015) Temperature inversion breakup with impacts on air quality in urban valleys influenced by topographic shading. J Appl Meteorol Climatol 54(2):302–321
Anquetin S, Guilbaud C, Chollet JP (1998) The formation and destruction of inversion layers within a deep valley. J Appl Meteorol 37:1547–1560
Antonioli S (2016) Lapse rate inversions in the Po valley: a 30-year overview. Master “environmental and land planning engineering”, Polytechnico Milano, 97
Aubinet MB, Heinesch B, Yernaux H, Yernaux M (2003) Horizontal and vertical CO2 advection in a sloping forest. Bound-Layer Meteorol 108:397–417
Bailey A, Chase TN, Cassano JJ, Noone D (2011) Changing temperature inversion characteristics in the US Southwest and relationships to large-scale atmospheric circulation. J Appl Meteorol Climatol 50(6):1307–1323
Barry RG (1983) Arctic Ocean ice and climate. Perspectives on a century of polar research. Ann Ass Amer Geogr 73(4):485–501
Barry RG (2008) Mountain weather and climate, 3rd edn. Press, Cambridge University, 506 p
Belcher SE, Harman IN, Finnigan JJ (2012) The wind in the willows: flows in forest canopies in complex terrain. Annu Rev Fluid Mech 44:479–504
Blennow K, Lindkvist L (2000) Models of low temperature and high irradiance and their application to explaining the risk of seedling mortality. For Ecol Manag 135(1-3):289–301
Brümmer B, Schultze M (2015) Analysis of a 7-year low-level temperature inversion data set measured at the 280 m high Hamburg weather mast. Meteorol Z 24(5):481–494
Busch N, Ebel U, Kraus H, Schaller E (1982) The Structure of the subpolar inversion-capped ABL. Arch Met Geoph Biokl Ser A 31(1-2):1–18. https://doi.org/10.1007/BF02257738
Chemel C, Arduini G, Staquet C, Largeron Y, Legain D, Tzanos D, Paci A (2016) Valley heat deficit as a bulk measure of wintertime particulate air pollution in the Arve River Valley. Atmos Environ 128:208–215
Czarnecka M, Nidzgorska-Lencewicz J (2017) The impact of thermal inversion on the variability of PM10 concentration in winter seasons in Tricity. Environ Prot Eng 44(2):157–172. https://doi.org/10.5277/epe170213
Daly C, Conklin DR, Unsworth MH (2010) Local atmospheric decoupling in complex topography alters climate change impacts. Int J Climatol 30(22):1857–1864. https://doi.org/10.1002/joc.2007
De Wekker SFJ, Kossmann M (2015) Convective boundary layer heights over mountainous terrain - a review of concepts. Front Earth Sci 3, doi:https://doi.org/10.3389/feart.2015.00077
Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. Glob Chang Biol 17:1022–1035
Dorninger M, Whiteman CD, Bica B, Eisenbach S, Pospichal B, Steinacker R (2011) Meteorological events affecting cold-air pools in a small basin. J Appl Meteorol Climatol 50:2223–2234
Dubreuil V, Debortoli N, Funatsu B, Nédélec V, Durieux L (2012) Impact of land-cover change in the southern Amazonia climate: a case study for the region of Alta Floresta, Mato Grosso, Brazil. Environ Monit Assess 184(2):877–891. https://doi.org/10.1007/s10661-011-2006-x
Dupont JC, Haeffelin M, Stolaki S, Elias T (2016) Analysis of dynamical and thermal processes driving fog and quasi-fog life cycles using the 2010–2013 ParisFog dataset. Pure Appl Geophys 173(1337):1358–1358. https://doi.org/10.1007/s00024-015-1159-x
El Melki T (2007) Inversions thermiques et concentrations de polluants atmosphériques dans la basse troposphère de Tunis. Climatologie, doi:https://doi.org/10.4267/climatologie.773
Erpicum M (2004) Discrimination des effets radiatifs et des effets advectifs à partir des observations de températures du réseau météo-routier de Wallonie. Norois:105–110. https://doi.org/10.4000/norois.1184
Fallot JM (2012) Influence de la topographie et des accumulations d’air froid sur les températures moyennes mensuelles et annuelles en Suisse. In Bigot S and Rome S (eds.). 25ème colloque de l’Association Internationale de Climatologie (AIC): 273-278
Fernando HJS, Verhoef B, Di Sabatino S, Leo LS, Park S (2013) The Phoenix Evening Transition Flow Experiment (TRANSFLEX). Boundary-Layer Meteor 147:443–468. https://doi.org/10.1007/s10546-012-9795-5
Foster CS, Crosman ET, Horel JD (2017) Simulations of a cold-air pool in Utah’s Salt Lake Valley: sensitivity to land use and snow cover. Boundary-Layer Meteor 164:63–87
Fratianni S, Cassardo C, Cremonini R (2009) Climatic characterization of foehn episodes in Piedmont, Italy. Geogr Fis Din Quat 32:15–12
Froelich N J, Schmid H P (2006) Flow divergence and density flows above and below a deciduous forest. Part II below-canopy topographic flows. Agric Forest Meteorol 138:29–43
Froelich NJ, Schmid HP, Grimmond CSB, Su H-B, Oliphant AJ (2005) Flow divergence and density flows above and below a deciduous forest. Part I. Non-zero mean vertical wind above canopy. Agri For Meteorol 133(1-4):140–152. https://doi.org/10.1016/j.agrformet.2005.09.005
Froelich NJ, Grimmond CSB, Schmid HP (2011) Nocturnal cooling below a forest canopy: model and evaluation. Agric Forest Meteor 151:957–968
Gardner AS, Sharp MJ, Koerner RM, Labine C, Boon S, Marshall SJ, Burgess DO, Lewis D (2009) Near-surface temperature lapse rates over Arctic glaciers and their implications for temperature downscaling. J Clim 22(16):4281–4298. https://doi.org/10.1175/2009JCLI2845.1
Gaudio N, Gendre X, Saudreau M, Seigner V, Balandier P (2017) Impact of tree canopy on thermal and radiative microclimates in a mixed temperate forest: a new statistical method to analyse hourly temporal dynamics. Agr Forest Meteor 237-238:71–79
Geiger R, Aron RH, Todhnter P (2003) The climate near the ground. Rowman & Littlefield Publishers, Inc, Lanham, Maryland, 584
Goulden ML, Munger JW, Fan S-M, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Glob Chang Biol 2:169–182
Grimmond CSB, Robeson SM, Schoof JT (2000) Spatial variability of micro-climatic conditions within a mid-latitude deciduous forest. Clim Res 15(2):137–149
Gross G (1987) Some effects of deforestation on nocturnal drainage flow and local climate. A numerical study. Boundary-Layer Meteor 38:315–337
Guédjé FK, Houéto VVA, Houngninnou E (2017) Features of the low-level temperature inversions at Abidjan upper-air station (Ivory Coast). J Mater Envir Sci 8(1):264–272
Gustavsson T, Karlsson M, Bogren J, Lindqvist S (1998) Development of temperature patterns during clear nights. J Appl Meteorol 37:559–571
Hannah L, Flint L, Syphard AD, Moritz MA, Buckley LB, McCullough IM (2014) Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol Evol 29:390–397
Hosler C (1961) Low-level inversion frequency in the contiguous United States. Mon Weather Rev 89:319–339
Ji D, Wang Y, Wang L, Chen L, Hu B, Tang G, Xin J, Song T, Wen T, Sun Y, Pan Y, Liu Z (2012) Analysis of heavy pollution episodes in selected cities of northern China. Atmos Environ 50:338–348. https://doi.org/10.1016/j.atmosenv.2011.11.053
Ji F, Evans JP, Di Luca A et al (2018) Projected change in characteristics of near surface temperature inversions for southeast Australia. Clim Dyn 39:1–17. https://doi.org/10.1007/s00382-018-4214-3
Joly D (2014) Etude comparative de la temperature en foret et en espace ouvert dans le parc naturel regional du Haut-Jura (Comparison of temperature in forest and on open space in Jura Mountain). Climatologie, 11. On line updated on: 22/07/2015. https://doi.org/10.4267/climatologie.562
Joly D, Berger A, Buoncristiani JF, Champagne O, Pergaud J, Richard Y, Soare P, Pohl B (2018) Geomatic downscaling of temperatures in the Mont-Blanc massif. Int J Climatol 38(4):1846–1863. https://doi.org/10.1002/joc.5300
Joly D, Gillet F (2017) Interpolation of temperatures under forest cover on a regional scale in the French Jura Mountains. Int J Climatol 37:659–670. https://doi.org/10.1002/joc.5029
Kadygrov EN, Khaikin M, Miller E, Shaposhnikov A, Troitsky AV (2005) Advanced atmospheric boundary layer temperature profiling with mtp-5he microwave system. In: Proceedings WMO technical conference on instruments and methods of observation, 4-7 May, 2005, Bucharest, Romania (TECO-2005)
Kahl JD (1990) Characteristic of the low-level temperature inversion along the Alaska Arctic Coast. Int J Climatol 10:537–548
Karlsson IM (2000) Nocturnal air temperature variations between forest and open areas. J Appl Meteorol 39:851–862
Kiefer MT, Zhong S (2013) The effect of sidewall forest canopies on the formation of cold-air pools: a numerical study. J Geophys Res Atmos 118:5965–5878. https://doi.org/10.1002/jgrd.50509
Kiefer MT, Zhong S (2015) The role of forest cover and valley geometry in cold-air pool evolution. J Geophys Res Atmos 120:8693–8711
Kirchner M, Faus-Kessler T, Jakobi G, Leuchner M, Ries L, Scheel HE, Suppan P (2013) Altitudinal temperature lapse rates in an Alpine valley: trends and the influence of season and weather patterns. Int J Climatol 33(3):539–555. https://doi.org/10.1002/joc.3444
Kukkonen J et al (2005) Analysis and evaluation of selected local-scale PM air pollution episodes in four European cities: Helsinki, London, Milan and Oslo. Atmos Environ 39(15):2759–2773. https://doi.org/10.1016/j.atmosenv.2004.09.090
Lareau NP, Crosman E, Whiteman CD, Horel JD, Hoch SW, Brown WO, Horst TW (2013) The persistent cold-air pool study bull. Am Meteorol Soc 94(1):51–63
Largeron Y, Staquet C (2016) Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys. Atmos Environ 135:92–108. https://doi.org/10.1016/j.atmosenv.2016.03.045
Lee X (1998) On micrometeorological observations of surface-air exchange over tall vegetation. Agr Forest Meteor 91:39–49
Li X, Wang L, Chen D, Yang K, Xue B, Sun L (2013) Near-surface air temperature lapse rates in mainland China during 1962–2011. J Geophys Res Atmos 118(14):7505–7515. https://doi.org/10.1002/jgrd.50553
Mahrt L, Heald R (2015) Common marginal cold pools. J Appl Meteorol Climatol 4(2):339–351
Mahrt L, Richardson S, Seaman N, Stauffer D (2010) Non-stationary drainage flows and motions in the cold pool. Tellus 62:698–705. https://doi.org/10.1111/j.1600-0870.2010.00473.x
Marvin CF (1914) Air drainage explained. Mon Weather Rev 10:583–585
Mernild SH, Liston G (2009) The influence of air temperature inversions on snowmelt and glacier mass balance simulations, Ammassalik Island, Southeast Greenland. J Appl Meteorol Climatol 49(1):47–67. https://doi.org/10.1175/2009JAMC2065.1
Milionis AE, Davies TD (2008) A comparison of temperature inversion statistics at a coastal and a non-coastal location influenced by the same synoptic regime. Theor Appl Climatol 94:225–239
Mirocha JD, Branko K (2010) Large-eddy simulation study of the influence of subsidence on the stably stratified atmospheric boundary layer. Boundary-Layer Meteor 134(1):1–21. https://doi.org/10.1007/s10546-009-9449-4
Mo R, Joe P, Isaac GA, Gultepe I, Rassemusen R, Milbrandt J, Mctaggart-Cowan R, Mailhot J, Brugman M, Smith T, Scott B (2014) Mid-mountain clouds at whistler during the Vancouver 2010 winter olympics and paralympics. Pure Appl Geophys 171(157–183):201–183. https://doi.org/10.1007/s00024-012-0540-2
Nigrelli G, Fratianni S, Zampollo A, Turconi L, Chiarle M (2017) The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps. Theor Appl Climatol Online First 131:1479–1491. https://doi.org/10.1007/s00704-017-2066-0
Oke TR (1987) Boundary layer climates. 2nd ed Routledge, 435
Paci A, Staquet C et al (2015) The Passy-2015 field experiment: an overview of the campaign and preliminary results. Proc of the 33rd international conference on alpine meteorology, Innsbruck, Austria (2015)
Paci A, Staquet C, Allard J, Barral H, Canut G, Cohard JM, Jaffrezo JL et al (2016) La campagne Passy-2015 : dynamique atmospherique et qualite de l’air dans la vallee de l’Arve. Pollution atmospherique, 231- 232, on line, updated on: 06/11/2017. http://lodel.irevues.inist.fr/pollution-atmospherique/index.php?id=5913
Pagès M, Pepin N, Miróa JR (2017) Measurement and modelling of temperature cold pools in the Cerdanya valley (Pyrenees), Spain. Meteor Appl 24:290–302
Palarz A, Celi ́nski-Mysław D, Ustrnul Z (2018) Temporal and spatial variability of surface-based inversions over Europe based on ERA-Interim reanalysis. Int J Climatol 38:158–168. https://doi.org/10.1002/joc.5167
Papadopoulos KH, Helmis CG (1999) Evening and morning transition of katabatic flows. Bound-Layer Meteor 92:195–227. https://doi.org/10.1023/A:1002070526425
Patsiou TS, Conti E, Theodoridis S, Randin CF (2017) The contribution of cold air pooling to the distribution of a rare and endemic plant of the Alps. Plant Ecol Diver 10(1):29–42
Pepin NC, Duane WA (2007) Comparison of surface and free-air temperature variability and trends at radiosonde sites and nearby high elevation surface stations. Int J Climatol 27(11):1519–1529. https://doi.org/10.1002/joc.1541
Pepin NC, Norris JR (2005) An examination of the differences between surface and free-air temperature trend at high-elevation sites: relationships with cloud cover, snow cover, and wind. J Geophys Res 110:D24112. https://doi.org/10.1029/2005JD006150
Porté A, Huard F, Dreyfus P (2004) Microclimate beneath pine plantation, semi-mature pine plantation and mixed broadleaved-pine forest. Agr Forest Meteor 126:175–182
Potter BE, Teclaw RM, Zasada JC (2001) The impact of forest structure on near-ground temperatures during two years of contrasting temperature extremes. Agric Forest Meteor 106(4):331–336
Price J, Vosper S, Brown A, Ross A, Clark P, Davies F, Horlacher V, Claxton B, McGregor J, Hoare J et al (2011) COLPEX: field and numerical studies over a region of small hills. Bull Am Meteorol Soc 9(12):1636–1650
Prӧmmel K, Geyer B, Jones JM, Widmann M (2010) Evaluation of the skill and added value of a reanalysis-driven regional simulation for Alpine temperature. Int J Climatol 30(5):760–773. https://doi.org/10.1002/joc.1916
Rolland C (2003) Spatial and seasonal variations of air temperature lapse rates in Alpine regions. J Clim 16(7):1032–1046. https://doi.org/10.1175/1520-0442(2003)016<1032:SASVOA>2.0.CO;2
Sabatier T, Paci A, Canut G, Largeron Y, Dabas A, Donier JM, Douffet T (2018) Wintertime local wind dynamics from scanning doppler lidar and air quality in the Arve River valley. Atmosphere 9(4):118. https://doi.org/10.3390/atmos9040118
Shimokawabe A, Yamaura Y, Akasaka T, Sato T, Shida Y, Yamanaka S, Nakamura F (2015) The distribution of cool spots as microrefugia in a mountainous area. PLoS One 10:e0135732. https://doi.org/10.1371/journal.pone.0135732
Sotiropoulou G, Tjernström MG, Sedlar J, Achtert P, Brooks BJ, Brooks IM, Persson OG, Prytherch J, Salisbury DJ, Shupe MD, Johnston PE, Wolfe D (2016) Atmospheric conditions during the Arctic clouds in summer experiment (ACSE): contrasting open water and sea ice surfaces during melt and freeze-up seasons. Amer Meteor Soc 29:8721–8744. https://doi.org/10.1175/JCLI-D-16-0211.1
Schuster C, Kirchner M, Jakobi G (2014) Frequency of inversions affects senescence phenology of Acer pseudoplatanus and Fagus sylvatica. Int J Biometeorol 58(4):485–498. https://doi.org/10.1007/s00484-013-0709-0
Staebler RM, Fuentes JD, Lee XH, Puckett KJ, Neumann HH, Deary JA (2000) Long term flux measurements at the borden forest. CMOS Bull 28(1):9–16
Staebler RM, Fitzjarrald DR (2004) Observing subcanopy CO2 advection. Agr Forest Meteor 122:139–156
Streten NA, Ishikawa N, Wendler G (1974) Some observations of the local wind regime on an Alaskan Arctic glacier. Arch Meteor Geophys Bioklimatol Ser B 22:337–350
Sun H, Clark TL, Stull RB, Black TA (2006) Two-dimensional simulation of airflow and carbon dioxide transport over a forested mountain. Part I: interactions between thermally-forced circulations. Agr Forest Meteor 140:338–351
Suomi J (2018) Extreme temperature differences in the city of Lahti, southern Finland: intensity, seasonality and environmental drivers. Weather and Climate Extremes 19:20–28
Van de Wiel B, Ronda R, Moene A, de Bruin H, Holtslag A (2002) Intermittent turbulence and oscillations in the stable boundary layer over land. Part 1: a bulk model. J Atmos Sci 59:942–958
Vitasse Y, KleinJames G, Kirchner JW, Rebetez M (2017) Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland. Theor Appl Climatol 130(3–4):1073–1083
Wharton S, Ma S, Baldocchi DD, Falk M, Newman JF, Osuna JL, Bible K (2017) Influence of regional nighttime atmospheric regimes on canopy turbulence and gradients at a closed and open forest in mountain-valley terrain. Agr Forest Meteor 237–238:18–29
Whiteman CD, Bian X, Zhong S (1999) Wintertime evolution of the temperature inversion in the Colorado Plateau Basin. J Appl Meteorol 38:1103–1117
Whiteman CD, Zhong S, Shaw WJ, Hubbe JM, Bian X, Mittelstadt J (2001) Cold pools in the Columbia basin. Weather Forecast 16:432–447
Wolf T, Esau I, Reuder J (2016) Analysis of the vertical temperature structure in the Bergen valley, Norway, and its connection to pollution episodes. J Geophys Res Atmos 119:10645–10662
Xu X (2014) Numerical study of canopy flows in complex terrain. PhD thesis, City University of New York, New York, 149
Zhang Z, Gong D, Mao R, Kimd SJ, Xub J, Zhao X, Ma Z (2017) Cause and predictability for the severe haze pollution in downtown Beijing in November–December 2015. Sci Total Environ 592:627–638. https://doi.org/10.1016/j.scitotenv.2017.03.009
Acknowledgments
We thank Météo-France for providing data free-of-charge, the “Parc Naturel Régional du Haut-Jura” and the “Conseil Régional Franche-Comté” which largely financed this study as part of the “Haut-Jura: l’énergie du territoire” LEADER programme, the “Long-term ecological research site Jurassian Arc” (http://zaaj.univ-fcomte.fr/?lang=en) for purchasing some of the loggers and the local mayors and private landowners who allowed us to set up the loggers in forest plots belonging to them.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Joly, D., Richard, Y. Frequency, intensity, and duration of thermal inversions in the Jura Mountains of France. Theor Appl Climatol 138, 639–655 (2019). https://doi.org/10.1007/s00704-019-02855-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00704-019-02855-3


