Cave microclimatology: diurnal variations in aerosol particle concentrations

Abstract

Based on a case study in speleotherapeutic Císařská Cave (Moravian Karst, Czech Republic), the behavior of cave aerosol was studied. The particle size distribution in the aerosol showed an atypical shape with majority of nucleation mode particles. The particle number concentrations oscillated diurnally with the amplitude of 1935 cm−3 (nanoparticles in the range of 6–154 nm) and 436 cm−3 (submicron particles in the range of 154–942 nm). This behavior was simulated under the use of simplified dynamic model. At the model optimization, it was found that the part of aerosol particles (submicron particles especially) was introduced into the cave from exterior by cave ventilation (controlled by external temperature) with participation of external wind and traffic. Other parts of the particles (the nanoparticles especially) probably arose directly in the cave. The presented findings could be important for better understanding of the factors governing cave microclimate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Absolon K (1970) Moravský kras (in Czech). Academia, Prague

    Google Scholar 

  2. Alvarez-Ramirez J, Rodriguez E, Echeverría JC (2005) Detrending fluctuation analysis based on moving average filtering. Physica A 354:199–219

    Article  Google Scholar 

  3. Balák I, Jančo J, Štefka L, Bosák P (1999) Agriculture and nature conservation in the Moravian Karst (Czech Republic). Int J Speleol 28B:71–88

    Article  Google Scholar 

  4. Bezek M, Gregorič A, Vaupotič J (2013) Radon decay products and 10–1100 nm aerosol particles in Postojna Cave. Nat Hazards Earth Syst Sci 13:823–831

    Article  Google Scholar 

  5. Calvo AI, Alves C, Castro AC, Pont V, Vicente AM, Fraile R (2013) Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos Res 120-121:1–28

    Article  Google Scholar 

  6. Cave BM, Pearson K (1914) Numerical illustrations of the variate-difference correlation method. Biometrika 10:340–355

    Article  Google Scholar 

  7. Cigna AA (1967) An analytical study of air circulation in caves. Int J Speleol 3:41–54

    Article  Google Scholar 

  8. Cigna AA (2004) Climate of caves. In: Gunn J (ed) Encyclopedia of caves and karst science. Taylor & Francis Books, Inc., London, pp 228–230

    Google Scholar 

  9. Csavina J, Field J, Félix O, Corral-Avitia AY, Sáez AE, Bettertond EA (2014) Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Sci Total Environ 487:82–90

    Article  Google Scholar 

  10. Cyriac J, Babychan D, Bansy OP, Zamnad KP, Nasar S (2016) Design and fabrication of a halotherapic generating unit for curing pulmonary diseases. IJSER 7(3):191–199

    Google Scholar 

  11. DeCarlo PF, Slowik JG, Worsnop DR, Davidovits P, Jimenez JL (2004) Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci Technol 38(12):1185–1205

    Article  Google Scholar 

  12. de Freitas CR, Littlejohn RN, Clarkson TS, Kristament S (1982) Cave climate: assessment of airflow and ventilation. Int J Climatol 2:383–397

    Article  Google Scholar 

  13. Dredge J, Fairchild IJ, Harrison RM, Fernandez-Cortes A, Sanchez-Moral S, Jurado V, Gunn J, Smith A, Spötl C, Mattey D, Wynne PM, Grassineau N (2013) Cave aerosols: distribution and contribution to speleothem geochemistry. Quat Sci Rev 63:23–41

    Article  Google Scholar 

  14. Faimon J, Štelcl J, Sas D (2006) Anthropogenic CO2-flux into cave atmosphere and its environmental impact: a case study in the Císařská Cave (Moravian Karst, Czech Republic). Sci Total Environ 369:231–245

    Article  Google Scholar 

  15. Faimon J, Troppová D, Baldík V, Novotný R (2012) Air circulation and its impact on microclimatic variables in the Císařská Cave (Moravian Karst, Czech Republic). Int J Climatol 32:599–623

    Article  Google Scholar 

  16. Faimon J, Lang M (2013) Variances in airflows during different ventilation modes in a dynamic U-shaped cave. Int J Speleol 42(2):115–122

    Article  Google Scholar 

  17. Grgić I, Iskra I, Podkrajšek B, Gerjevič VD (2014) Measurements of aerosol particles in the Škocjan Caves, Slovenia. Environ Sci Pollut Res 21:1915–1923

    Article  Google Scholar 

  18. Harris S, Maricq M (2001) Signature size distributions for diesel and gasoline engine exhaust particulate matter. J Aerosol Sci 32:749–764

    Article  Google Scholar 

  19. Horváth T (1986) Speleotherapy: a special kind of climatotherapy, its role in respiratory rehabilitation. Int Rehabil Med 8:90–92

    Article  Google Scholar 

  20. Iskra I, Kávási N, Vaupotič J (2010) Nano aerosols in the Postojnska Cave. Acta Cardiol 39(3):523–528

    Google Scholar 

  21. Jaenicke R (1993) Tropospheric aerosols. In: Hobbs PV (ed) Aerosol-cloud-climate interactions. Academic Press Inc., San Diego, pp 1–31

    Google Scholar 

  22. Järvinen A, Aitomaa M, Rostedt A, Keskinen J, Yli-Ojanperä J (2014) Calibration of the new electrical low pressure impactor (ELPI+). J Aerosol Sci 69:150–159

    Article  Google Scholar 

  23. Kanniah KD, Kaskaoutis DG, Limd HS, Latif MT, Zaman NAFK, Liewe J (2016) Overview of atmospheric aerosol studies in Malaysia: known and unknown. Atmos Res 182:302–318

    Article  Google Scholar 

  24. Kendrová L, Takáč P, Kubincová A, Mikuľáková W, Nechvátal P (2016) Effect of spa treatment and speleotherapy in the treatment of chronic obstructive pulmonary disease – a pilot study. CSWHI 7(2):7–15

    Article  Google Scholar 

  25. Kerminen VM, Lehtinen KEJ, Anttila T, Kulmala M (2004) Dynamics of atmospheric nucleation mode particles: a timescale analysis. Tellus Ser B Chem Phys Meteorol 56(2):135–146

    Article  Google Scholar 

  26. Kertész Z, Borbély-Kiss I, Hunyadi I (1999) Study of aerosols collected in a speleotherapeutic cave situated below Budapest, Hungary. Nucl Inst Methods Phys Res B 150(1–4):384–391

    Article  Google Scholar 

  27. Kertész Z, Balásházy I, Borbély-Kiss I, Hofmann W, Hunyadi I, Salma I, Winkler-Heil R (2002) Composition, size distribution and lung deposition distribution of aerosols collected in the atmosphere of a speleotherapeutic cave situated below Budapest, Hungary. Nucl Instrum Meth B 189(1–4):221–226

    Article  Google Scholar 

  28. Keskinen J, Pietarinen K, Lehtimäki M (1992) Electrical low pressure impactor. J Aerosol Sci 23(4):353–360

    Article  Google Scholar 

  29. Kulmala M, Kerminen V-M (2008) On the formation and growth of atmospheric nanoparticles. Atmos Res 90:132–150

    Article  Google Scholar 

  30. Laakso L, Hussein T, Aarnio P, Komppula M, Hiltunen V, Viisanen Y, Kulmala M (2003) Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and Arctic environments in Finland. Atmos Environ 37:2629–2641

    Article  Google Scholar 

  31. Lang M, Faimon J (2013) Is the Helmholtz resonator a suitable tool for prediction of the volumes of hidden cave spaces? In: Filippi M, Bosák P (eds) Proceedings of the 16th International Congress of Speleology, vol 2. Czech Speleological Society, Prague, pp 354–357

    Google Scholar 

  32. Lang M, Faimon J, Ek C (2015) The relationship between carbon dioxide concentration and visitor numbers in the homothermic zone of the Balcarka Cave (Moravian Karst) during a period of limited ventilation. Int J Speleol 44(2):167–176

    Article  Google Scholar 

  33. Lang M, Faimon J, Godissart J, Ek C (2017) Carbon dioxide seasonality in dynamically ventilated caves: the role of advective fluxes. Theor Appl Climatol 129:1355–1372

    Article  Google Scholar 

  34. Liu X, Penner JE, Herzog M (2005) Global modeling of aerosol dynamics: model description, evaluation, and interactions between sulfate and nonsulfate aerosols. J Geophys Res 110:D18206

    Article  Google Scholar 

  35. Mäkelä JM, Koponen IK, Aalto P, Kulmala M (2000) One-year data of submicron size modes of tropospheric background aerosol in southern Finland. J Aerosol Sci 31:595–611

    Article  Google Scholar 

  36. Marjamäki M, Keskinen J, Chen D-R, Pui D (2000) Performance evaluation of the electrical low-pressure impactor (ELPI). J Aerosol Sci 31(2):249–261

    Article  Google Scholar 

  37. McMurry PH (2000) A review of atmospheric aerosol measurements. Atmos Environ 34:1959–1999

    Article  Google Scholar 

  38. Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz Z, Lettenmaier DP, Stouffer RJ (2008) Climate change – stationarity is dead: whither water management? Science 319(5863):573–574

    Article  Google Scholar 

  39. Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ, Dettinger MD, Krysanova V (2015) On critiques of “Stationarity is dead: whither water management?”. Water Resour Res 51:7785–7789

    Article  Google Scholar 

  40. Montanari A, Koutsoyiannis D (2014) Modeling and mitigating natural hazards: stationarity is immortal! Water Resour Res 50:9748–9756

    Article  Google Scholar 

  41. Onac BP, Forti P (2011) Minerogenetic mechanisms occurring in the cave environment: an overview. Int J Speleol 40(2):79–98

    Article  Google Scholar 

  42. Shi JP, Harrison RM (1999) Investigation of ultrafine particle formation during diesel exhaust dilution. Environ Sci Technol 33(21):3730–3736

    Article  Google Scholar 

  43. Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2003) Effect of wind speed on columnar aerosol optical properties at Midway Island. J Geophys Res 108(D24):4802

    Article  Google Scholar 

  44. Smith AC, Wynn PM, Barker PA (2013) Natural and anthropogenic factors which influence aerosol distribution in Ingleborough Show Cave, UK. Int J Speleol 42(1):49–56

    Article  Google Scholar 

  45. Stanier CO, Khlystov AY, Pandis SN (2004) Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmos Environ 38:3275–3284

    Article  Google Scholar 

  46. Stirbu C, Stirbu C, Sandu I (2012) Impact assessment of saline aerosols on exercise capacity of athletes. Procedia Soc Behav Sci 46:4141–4145

    Article  Google Scholar 

  47. Tanda S, Ličbinský R, Hegrová J, Faimon J, Goessler W (2019) Arsenic speciation in aerosols of a respiratory therapeutic cave: a first approach to study arsenicals in ultrafine particles. Sci Total Environ 651:1839–1848

    Article  Google Scholar 

  48. von Bismarck-Osten C, Birmili W, Ketzel M, Weber S (2013) Characterization of parameters influencing the spatio-temporal variability of urban particle number size distributions in four European cities. Atmos Environ 77:415–429

    Article  Google Scholar 

  49. Wehner B, Wiedensohler A, Tuch TM, Wu ZJ, Hu M, Slanina J, Kiang CS (2004) Variability of the aerosol number size distribution in Beijing, China: new particle formation, dust storms, and high continental background. Geophys Res Lett 31:L22108

    Article  Google Scholar 

  50. Woo KS, Chen DR, Pui DYH, McMurry PH (2001) Measurement of Atlanta aerosol size distributions: observations of ultrafine particle events. Environ Sci Technol 34:75–87

    Google Scholar 

  51. Wu Z, Hu M, Lin P, Liu S, Wehner B, Wiedensohler A (2008) Particle number size distribution in the urban atmosphere of Beijing, China. Atmos Environ 42:7967–7980

    Article  Google Scholar 

  52. Wu Y, Zhang S, Hao J, Liu H, Wu X, Hu J, Walsh MP, Wallington TJ, Zhang KM, Stevanovic S (2017) On-road vehicle emissions and their control in China: a review and outlook. Sci Total Environ 574:332–349

    Article  Google Scholar 

  53. Zhang Q, Stanier CO, Canagaratna MR, Jayne JT, Worsnop DR, Pandis SN, Jimenez JL (2004) Insights into the chemistry of new particle formation and growth events in Pittsburgh based on aerosol mass spectrometry. Environ Sci Technol 38(18):4797–4809

    Article  Google Scholar 

  54. Zhang X, Yin Y, Lin Z, Han Y, Hao J, Yuan L, Chen K, Chen J, Kong S, Shan Y, Xiao H, Tan W (2017) Observation of aerosol number size distribution and new particle formation at a mountainous site in Southeast China. Sci Total Environ 575:309–320

    Article  Google Scholar 

  55. Zhao W, Hopke PK (2006) Source identification for fine aerosols in Mammoth Cave National Park. Atmos Res 80:309–322

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Pavel Pracný for critical reading of the manuscript and the employees of the Children Sanatorium with Speleotherapy (Ostrov u Macochy) for a wide support.

Funding

This article was produced with the financial support from the Ministry of Education, Youth and Sports within the National Sustainability Programme I, project of Transport R&D Centre (LO1610), on the research infrastructure acquired from the Operation Programme Research and Development for Innovations (CZ.1.05/2.1.00/03.0064).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiří Faimon.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faimon, J., Ličbinský, R., Lang, M. et al. Cave microclimatology: diurnal variations in aerosol particle concentrations. Theor Appl Climatol 137, 2841–2852 (2019). https://doi.org/10.1007/s00704-019-02776-1

Download citation