New insights in the relation between climate and slope failures at high-elevation sites

Abstract

Climate change is now unequivocal; however, the type and extent of terrestrial impacts are still widely debated. Among these, the effects on slope stability are receiving a growing attention in recent years, both as terrestrial indicators of climate change and implications for hazard assessment. High-elevation areas are particularly suitable for these studies, because of the presence of the cryosphere, which is particularly sensitive to climate. In this paper, we analyze 358 slope failures which occurred in the Italian Alps in the period 2000–2016, at an elevation above 1500 m a.s.l. We use a statistical-based method to detect climate anomalies associated with the occurrence of slope failures, with the aim to catch an eventual climate signal in the preparation and/or triggering of the considered case studies. We first analyze the probability values assumed by 25 climate variables on the occasion of a slope-failure occurrence. We then perform a dimensionality reduction procedure and come out with a set of four most significant and representative climate variables, in particular heavy precipitation and short-term high temperature. Our study highlights that slope failures occur in association with one or more climate anomalies in almost 92% of our case studies. One or more temperature anomalies are detected in association with most case studies, in combination or not with precipitation (47% and 38%, respectively). Summer events prevail, and an increasing role of positive temperature anomalies from spring to winter, and with elevation and failure size, emerges. While not providing a final evidence of the role of climate warming on slope instability increase at high elevation in recent years, the results of our study strengthen this hypothesis, calling for more extensive and in-depth studies on the subject.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Allen S, Huggel C (2013) Extremely warm temperatures as a potential cause of recent high mountain rockfall. Glob Planet Chang 107:59–69

    Article  Google Scholar 

  2. ARPA Lombardia (2018) ARPA Lombardia. http://www.arpalombardia.it/siti/arpalombardia/meteo/osservazioniedati/datitemporeale/rilevazioni-in-tempo-reale/Pagine/Rilevazioni-in-tempo-reale.aspx. Accessed 29 Jan 2018

  3. ARPA Piemonte (2018a) Banca Dati Eventi del Piemonte. http://webgis.arpa.piemonte.it/Geoviewer2D/index.html?config=other-configs/bde_config.json. Accessed 2 March 2018

  4. ARPA Piemonte (2018b) Accesso ai dati » Annali meteorologici ed idrologici » Banca dati meteorologica. https://www.arpa.piemonte.gov.it/rischinaturali/accesso-ai-dati/annali_meteoidrologici/annali-meteo-idro/banca-dati-meteorologica.html. Accessed 29 Jan 2018

  5. ARPAV (2018) ARPAV. http://www.arpa.veneto.it/bollettini/meteo60gg/Mappa_TEMP.htm. Accessed 29 Jan 2018

  6. Auer I, Bohm R, Jurkovic A et al (2007) HISTALP - historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46. https://doi.org/10.1002/joc.1377

    Article  Google Scholar 

  7. Avanzi F, De Michele C, Gabriele S et al (2015) Orographic signature on extreme precipitation of short durations. J Hydrometeorol 16:278–294. https://doi.org/10.1175/JHM-D-14-0063.1

    Article  Google Scholar 

  8. Dal Piaz G, Bistacchi A, Massironi M (2003) Geological outline of the Alps. Episodes 26:175–180

    Google Scholar 

  9. Beniston M, Farinotti D, Stoffel M, Andreassen LM, Coppola E, Eckert N, …, Huwald H (2018) The European mountain cryosphere: a review of its current state, trends, and future challenges. Cryosphere 12(2):759–794

  10. Brunetti M, Lentini G, Maugeri M, Nanni T, Auer I, Boehm R, Schoener W (2009) Climate variability and change in the greater alpine region over the last two centuries based on multi-variable analysis. Int J Climatol 29:2197–2225. https://doi.org/10.1002/joc.1857

    Article  Google Scholar 

  11. Buisan ST, López-Moreno JI, Saz MA, Kochendorfer J (2016) Impact of weather type variability on winter precipitation, temperature and annual snowpack in the Spanish Pyrenees. Clim Res 69(1):79–92

    Article  Google Scholar 

  12. Cardinali M, Ardizzone F, Galli M et al (2000) Landslides triggered by rapid snow melting: the December 1996-January 1997 event in Central Italy. Proceedings of the EGS Plinius Conference, Editoriale Bios, Cosenza, Maratea, Italy, pp 439–448

  13. Centro Funzionale Valle D’Aosta (2018) Meteo CF VDA - Stazioni meteo. http://cf.regione.vda.it/lista_stazioni.php. Accessed 29 Jan 2018

  14. Chadburn SE, Burke EJ, Cox PM, Friedlingstein P, Hugelius G, Westermann S (2017) An observation-based constraint on permafrost loss as a function of global warming. Nat Clim Chang 7:340–344. https://doi.org/10.1038/nclimate3262

    Article  Google Scholar 

  15. Chiarle M, Geertsema M, Mortara G, Clague JJ (2011) Impacts of climate change on debris flow occurrence in the cordillera of Western Canada and the European Alps. In: Genevois R, Hamilton DL, Prestininzi A (eds) Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation, Mechanics, Prediction and Assessment, Padua, Italy - 14-17 June 2011. Università La Sapienza, Roma, pp 45–52

    Google Scholar 

  16. Collins BD, Stock GM (2016) Rockfall triggering by cyclic thermal stressing of exfoliation fractures. Nat Geosci 9:395–400. https://doi.org/10.1038/ngeo2686

    Article  Google Scholar 

  17. Cremonese E, Gruber S, Phillips M, Pogliotti P, Boeckli L, Noetzli J, Suter C, Bodin X, Crepaz A, Kellerer-Pirklbauer A, Lang K, Letey S, Mair V, Morra di Cella U, Ravanel L, Scapozza C, Seppi R, Zischg A (2011) An inventory of permafrost evidence for the European Alps. Cryosph 5:651–657. https://doi.org/10.5194/tc-5-651-2011

    Article  Google Scholar 

  18. Crespi A, Brunetti M, Lentini G, Maugeri M (2017) 1961-1990 high-resolution monthly precipitation climatologies for Italy. Int J Climatol 38:878–895. https://doi.org/10.1002/joc.5217

    Article  Google Scholar 

  19. Crozier MJ (2010) Deciphering the effect of climate change on landslide activity: a review. Geomorphology 124(3–4):260–267

    Article  Google Scholar 

  20. Davies MCR, Hamza O, Harris C (2001) The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities. Permafr Periglac Process 12:137–144. https://doi.org/10.1002/ppp.378

    Article  Google Scholar 

  21. Dehn M, Bürger G, Buma J, Gasparetto P (2000) Impact of climate change on slope stability using expanded downscaling. Eng Geol 55(3):193–204

    Article  Google Scholar 

  22. Deline P et al (2015) Chapter 15 - Ice Loss and Slope Stability in High-Mountain Regions. In: Shroder JF, Haeberli W, Whiteman C (eds) Snow and Ice-Related Hazards, Risks and Disasters. Academic Press, pp 521–561

  23. Esposito S, Alilla R, Beltrano MC, Dal Monte G, Di Giuseppe E, Iafrate L, Libertà A, Parisse B, Raparelli E, Scaglione M (2014) Atlante italiano del clima e dei cambiamenti climatici, Progetto Agroscenari, Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Unità di Ricerca per la Climatologia e la Meteorologia applicate all’Agricoltura, 29–30 October 2014, Rome, Italy

  24. Fischer L, Kääb A, Huggel C, Noetzli J (2006) Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face. Nat Hazards Earth Syst Sci 6:761–772

    Article  Google Scholar 

  25. Fischer L, Purves RS, Huggel C, Noetzli J, Haeberli W (2012) On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas. Nat Hazards Earth Syst Sci 12:241–254. https://doi.org/10.5194/nhess-12-241-2012

    Article  Google Scholar 

  26. GAPHAZ (2017) Assessment of Glacier and Permafrost Hazards in Mountain Regions – Technical Guidance Document. Prepared by Allen S, Frey H, Huggel C et al. Standing Group on Glacier and Permafrost Hazards in Mountains (GAPHAZ) of the International Association of Cryospheric Sciences (IACS) and the International Permafrost Association (IPA). Zurich, Switzerland / Lima, Peru, 72 pp

  27. Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth-Sci Rev 162:227–252. https://doi.org/10.1016/j.earscirev.2016.08.011

    Article  Google Scholar 

  28. Geertsema M, Chiarle M (2013) Mass movement causes: glacier thinning. In: Shroder J, Marston RA, Stoffel M (eds) Treatise on geomorphology, Mountain and Hillslope Geomorphology, vol 7. Academic, San Diego, pp 217–222.

    Google Scholar 

  29. Geertsema M, Clague JJ, Schwab JW, Evans SG (2006) An overview of recent large catastrophic landslides in northern British Columbia, Canada. Eng Geol 83(1–3):120–143

    Article  Google Scholar 

  30. Geertsema M, van Hees M, Chiarle M, Hayek J. (2014) Debris flow on a seasonally frozen rupture surface at Moose Lake, British Columbia. In: Shan W, Guo Y, Wang F, Marui H, Strom A (eds) Landslides in cold regions in the context of climate change. Environmental Science and Engineering. Springer, Cham

  31. Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps-a review. Sci Total Environ 493:1138–1151. https://doi.org/10.1016/j.scitotenv.2013.07.050

    Article  Google Scholar 

  32. Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res 112(F2)

  33. Haeberli W, Whiteman C, Shroder JF (eds) (2015) Snow and Ice-related Hazards, Risks and Disasters. Waltham, MA: Academic Press

  34. Harris C, Arenson LU, Christiansen HH, Etzelmüller B, Frauenfelder R, Gruber S, Haeberli W, Hauck C, Hölzle M, Humlum O, Isaksen K, Kääb A, Kern-Lütschg MA, Lehning M, Matsuoka N, Murton JB, Nötzli J, Phillips M, Ross N, Seppälä M, Springman SM, Vonder Mühll D (2009) Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Sci Rev 92:117–171. https://doi.org/10.1016/j.earscirev.2008.12.002

    Article  Google Scholar 

  35. Hasler A, Gruber S, Beutel J (2012) Kinematics of steep bedrock permafrost. J Geophys Res 117: F01016. https://doi.org/10.1029/2011JF001981

    Article  Google Scholar 

  36. HISTALP (2018) HISTALP. http://www.zamg.ac.at/histalp/. Accessed 26 Jan 2018

  37. Huggel C, Salzmann N, Allen S, Caplan-Auerbach J, Fischer L, Haeberli W, Larsen C, Schneider D, Wessels R (2010) Recent and future warm extreme events and high-mountain slope stability. Philos Trans A Math Phys Eng Sci 368:2435–2459. https://doi.org/10.1098/rsta.2010.0078

    Article  Google Scholar 

  38. Huggel C, Allen S, Clague JJ, Fischer L, Korup O, Schneider D (2013) Detecting potential climate signals in large slope failures in cold mountain regions. In: Landslide science and practice. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 361–367

    Google Scholar 

  39. Isotta FA, Frei C, Weilguni V, Perčec Tadić M, Lassègues P, Rudolf B, Pavan V, Cacciamani C, Antolini G, Ratto SM, Munari M, Micheletti S, Bonati V, Lussana C, Ronchi C, Panettieri E, Marigo G, Vertačnik G (2014) The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int J Climatol 34:1657–1675. https://doi.org/10.1002/joc.3794

    Article  Google Scholar 

  40. Jakob M, Lambert S (2009) Climate change effects on landslides along the southwest coast of British Columbia. Geomorphology 107(3–4):275–284

    Article  Google Scholar 

  41. Jakob M, Owen T, Simpson T (2012) A regional real-time debris-flow warning system for the District of North Vancouver, Canada. Landslides 9(2):165–178

    Article  Google Scholar 

  42. Kääb A, Chiarle M, Raup B, Schneider C (2007) Climate change impacts on mountain glaciers and permafrost. Glob Planet Chang 56:vii–ix

    Google Scholar 

  43. Luino F (2005) Sequence of instability processes triggered by heavy rainfall in northwestern Italy. Geomorphology 66:13–39

    Article  Google Scholar 

  44. Luino F, Turconi L (2017) Eventi di piena e frana in Italia settentrionale nel periodo 2005–2016. Ed. SMI, ISBN 978-88-903023-8-1

  45. Ma T, Li C, Lu Z, Wang B (2014) An effective antecedent precipitation model derived from the power-law relationship between landslide occurrence and rainfall level. Geomorphology 216:187–192

    Article  Google Scholar 

  46. Magnin F, Deline P, Ravanel L, Noetzli J, Pogliotti P (2015) Thermal characteristics of permafrost in the steep alpine rock walls of the Aiguille du Midi (Mont Blanc Massif, 3842 m asl). Cryosphere 9(1):109–121

    Article  Google Scholar 

  47. Merlone A, Lopardo G, Sanna F, Bell S, Benyon R, Bergerud RA, Bertiglia F, Bojkovski J, Böse N, Brunet M, Cappella A, Coppa G, del Campo D, Dobre M, Drnovsek J, Ebert V, Emardson R, Fernicola V, Flakiewicz K, Gardiner T, Garcia-Izquierdo C, Georgin E, Gilabert A, Grykałowska A, Grudniewicz E, Heinonen M, Holmsten M, Hudoklin D, Johansson J, Kajastie H, Kaykısızlı H, Klason P, Kňazovická L, Lakka A, Kowal A, Müller H, Musacchio C, Nwaboh J, Pavlasek P, Piccato A, Pitre L, de Podesta M, Rasmussen MK, Sairanen H, Smorgon D, Sparasci F, Strnad R, Szmyrka- Grzebyk A, Underwood R (2015) The MeteoMet project - metrology for meteorology: challenges and results. Meteorol Appl 22:820–829. https://doi.org/10.1002/met.1528

    Article  Google Scholar 

  48. Meteotrentino (2018) Meteotrentino. https://www.meteotrentino.it/?id=168#!/content?menuItemDesktop=111. Accessed 29 Jan 2018

  49. Mountain Research Initiative EDW Working Group (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5:424–430. https://doi.org/10.1038/nclimate2563\rhttp://www.nature.com/nclimate/journal/v5/n5/abs/nclimate2563.html#supplementary-information

  50. Nigrelli G, Fratianni S, Zampollo A, Turconi L, and Chiarle M (2018) The altitudinal temperature lapse rates applied to high elevation rockfalls studies in the Western European Alps. Theor Appl Climatol 131(3-4):1479–1491

    Article  Google Scholar 

  51. Nigrelli G, Lucchesi S, Bertotto S, Fioraso G, Chiarle M (2014) Climate variability and Alpine glaciers evolution in Northwestern Italy from the Little Ice Age to the 2010s. Theor Appl Climatol 122:595–608. https://doi.org/10.1007/s00704-014-1313-x

    Article  Google Scholar 

  52. Northon K (2017) NASA, NOAA data show 2016 warmest year on record globally. https://www.nasa.gov/press-release/nasa-noaa-data-show-2016-warmest-year-on-record-globally. Accessed 29 Jan 2018

  53. Palladino MR, Viero A, Turconi L, Brunetti MT, Peruccacci S, Melillo M, Luino F, Deganutti AM, Guzzetti F (2018) Rainfall thresholds for the activation of shallow landslides in the Italian Alps: the role of environmental conditioning factors. Geomorphology 303:53–67. https://doi.org/10.1016/J.GEOMORPH.2017.11.009

    Article  Google Scholar 

  54. Paranunzio R, Laio F, Nigrelli G, Chiarle M (2015) A method to reveal climatic variables triggering slope failures at high elevation. Nat Hazards 76:1039–1061. https://doi.org/10.1007/s11069-014-1532-6

    Article  Google Scholar 

  55. Paranunzio R, Laio F, Chiarle M, Nigrelli G, Guzzetti F (2016) Climate anomalies associated with the occurrence of rockfalls at high-elevation in the Italian Alps. Nat Hazards Earth Syst Sci 16:2085–2106. https://doi.org/10.5194/nhess-16-2085-2016

    Article  Google Scholar 

  56. Paranunzio R, Chiarle M, Laio F et al (2017) Climatic conditions associated to the occurrence of slope instabilities in the Italian Alps in year 2016. EGU Gen Assem Conf Abstr 19:13227

    Google Scholar 

  57. Pavlova I, Jomelli V, Brunstein D, Grancher D, Martin E, Déqué M (2014) Debris flow activity related to recent climate conditions in the French Alps: a regional investigation. Geomorphology 219:248–259. https://doi.org/10.1016/J.GEOMORPH.2014.04.025

    Article  Google Scholar 

  58. Pepin N, Bradley RS, Diaz HF et al. (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5(5):424–430. https://doi.org/10.1038/NCLIMATE2563

    Article  Google Scholar 

  59. Peruccacci S, Brunetti MT, Gariano SL, Melillo M, Rossi M, Guzzetti F (2017) Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 290:39–57. https://doi.org/10.1016/J.GEOMORPH.2017.03.031

    Article  Google Scholar 

  60. Protezione Civile - Provincia Autonoma di Trento (2018) Primo Piano - Prevenzione e Territorio. http://www.protezionecivile.tn.it/territorio/primop_territorio/. Accessed 2 March 2018

  61. Provincia autonoma di Bolzano - Alto Adige (2018).http://meteo.provincia.bz.it/. Accessed 29 Jan 2018

  62. Ravanel L, Deline P (2015) Rockfall hazard in the Mont Blanc Massif increased by the current atmospheric warming. In: Engineering geology for society and territory - volume 1. Springer International Publishing, Cham, pp 425–428

    Google Scholar 

  63. Ravanel L, Magnin F, Deline P (2017) Impacts of the 2003 and 2015 summer heatwaves on permafrost-affected rock-walls in the Mont Blanc massif. Sci Total Environ 609:132–143. https://doi.org/10.1016/J.SCITOTENV.2017.07.055

    Article  Google Scholar 

  64. RAVdA (2018) Catasto Dissesti Regionale - SCT. http://catastodissesti.partout.it/. Accessed 2 March 2018

  65. Rebetez M, Lugon R, Baeriswyl PA (1997) Climatic change and debris flows in high mountain regions: the case study of the Ritigraben Torrent (Swiss Alps). In: Climatic change at high elevation sites. Springer Netherlands, Dordrecht, pp 139–157

    Google Scholar 

  66. Saez JL, Corona C, Stoffel M, Berger F (2013) Climate change increases frequency of shallow spring landslides in the French Alps. Geology 41:619–622. https://doi.org/10.1130/G34098.1

    Article  Google Scholar 

  67. Salvatore MC, Zanoner T, Baroni C, Carton A, Banchieri FA, Viani C, Giardino M, Perotti L (2015) The state of Italian glaciers: a snapshot of the 2006–2007 hydrological period. Geogr Fis Din Quat 38:175–198 2015

    Google Scholar 

  68. Schar C, Vidale PL, Luthi D et al (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. https://doi.org/10.1038/nature02300

    Article  Google Scholar 

  69. SINAnet Ispra (2017) DEM20 — Italiano. http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais/dem20/view. Accessed 29 Jan 2018

  70. Smiraglia C, Azzoni RS, D’agata C et al (2015) The evolution of the Italian glaciers from the previous data base to the new Italian inventory. Preliminary considerations and results. Geogr Fis Din Quat 38:79–87. https://doi.org/10.4461/GFDQ.2015.38.08

    Google Scholar 

  71. Stocker TF, Qin D, Plattner GK et al (2013) IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. IPCC AR5:1535

    Google Scholar 

  72. Stoffel M, Huggel C (2017) Mass movements in periglacial environments. In: International encyclopedia of geography: people, the earth, environment and technology. John Wiley & Sons, Ltd, Chichester, pp 1–8

    Google Scholar 

  73. Stoffel M, Bollschweiler M, Beniston M (2011) Rainfall characteristics for periglacial debris flows in the Swiss Alps: past incidences–potential future evolutions. Clim Chang 105(1–2):263–280

    Article  Google Scholar 

  74. Team CW, Pachauri RK, Meyer LA (2014) IPCC Climate Change 2014: Synthesis Report Summary for Policymakers. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

  75. Trigila A, Iadanza C, Spizzichino D (2010) Quality assessment of the Italian landslide inventory using GIS processing. Landslides 7:455–470. https://doi.org/10.1007/s10346-010-0213-0

    Article  Google Scholar 

  76. Turconi L, Kumar De S, Tropeano D, Savio G (2010) Slope failure and related processes in the Mt. Rocciamelone area (Cenischia Valley, Western Italian Alps). Geomorphology 114:115–128. https://doi.org/10.1016/j.geomorph.2009.06.012

    Article  Google Scholar 

  77. Weber S, Beutel J, Faillettaz J, Hasler A, Krautblatter M, Vieli A (2017) Quantifying irreversible movement in steep, fractured bedrock permafrost on Matterhorn (CH). Cryosphere 11:567–583. https://doi.org/10.5194/tc-11-567-2017

    Article  Google Scholar 

  78. Wieczorek GF, Glade T (2005) Climatic factors influencing occurrence of debris flows. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Springer, Berlin, pp 325–362

    Google Scholar 

  79. Zemp M, Frey H, Gärtner-Roer I, Nussbaumer SU, Hoelzle M, Paul F, Haeberli W, Denzinger F, Ahlstrøm AP, Anderson B, Bajracharya S, Baroni C, Braun LN, Cáceres BE, Casassa G, Cobos G, Dávila LR, Delgado Granados H, Demuth MN, Espizua L, Fischer A, Fujita K, Gadek B, Ghazanfar A, Ove Hagen J, Holmlund P, Karimi N, Li Z, Pelto M, Pitte P, Popovnin VV, Portocarrero CA, Prinz R, Sangewar CV, Severskiy I, Sigurđsson O, Soruco A, Usubaliev R, Vincent C (2015) Historically unprecedented global glacier decline in the early 21st century. J Glaciol 61:745–762. https://doi.org/10.3189/2015JoG15J017

    Article  Google Scholar 

Download references

Acknowledgements

This research was conducted with funding provided by CNR IRPI Torino. Francesco Laio acknowledges funding from the ERC grant #647473. The Authors thank ARPA Piemonte, ARPA Lombardia, ARPA Veneto, Centro Funzionale - Regione Autonoma Valle d’Aosta, Ufficio Idrografico - Provincia Autonoma di Bolzano, Meteotrentino, and ARPA FVG for providing access to their databases of climate records. The Authors thank the IRPI personnel and external collaborators who, over time, contributed to the collection and organization of the documentation on slope instability, in particular: Dr. Matteo Collimedaglia (naturalist of the CNR IRPI Torino), Dr. Fabrizio Kranitz (Regione Friuli-Venezia Giulia), Dr. Paolo Fassi (Regione Lombardia-Servizio Tecnico Sala Operativa), Dr. Luciano Arziliero (Regione Veneto), and Dr. Volkmar Mair (Provincia autonoma di Bolzano – Alto Adige).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roberta Paranunzio.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 169 kb)

ESM 2

(PDF 528 kb)

ESM 3

(PDF 378 kb)

ESM 4

(PDF 239 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paranunzio, R., Chiarle, M., Laio, F. et al. New insights in the relation between climate and slope failures at high-elevation sites. Theor Appl Climatol 137, 1765–1784 (2019). https://doi.org/10.1007/s00704-018-2673-4

Download citation