Exploiting satellite observations for global surface albedo trends monitoring

Abstract

Surface albedo is one of the essential climate variables as it influences the radiation budget and the energy balance. Because it is used in a variety of scientific fields, from local to global scale, spatially and temporally disaggregated albedo data are required, which can be derived from satellites. Satellite observations have led to directional-hemispherical (black-sky) and bi-hemispherical (white-sky) albedo products, but time series of high spatial resolution true (blue-sky) albedo estimations at global level are not available. Here, we exploit the capabilities of Google Earth Engine (GEE) for big data analysis to derive global snow-free land surface albedo estimations and trends at a 500-m scale, using satellite observations from 2000 to 2015. Our study reveals negative albedo trends mainly in Mediterranean, India, south-western Africa and Eastern Australia, whereas positive trends mainly in Ukraine, South Russia and Eastern Kazakhstan, Eastern Asia, Brazil, Central and Eastern Africa and Central Australia. The bulk of these trends can be attributed to rainfall, changes in agricultural practices and snow cover duration. Our study also confirms that at local scale, albedo changes are consistent with land cover/use changes that are driven by anthropogenic activities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Benas N, Chrysoulakis N (2015) Estimation of the land surface albedo changes in the broader Mediterranean area, based on 12 years satellite observations. Remote Sens 7:16150–16163

    Article  Google Scholar 

  2. Betts RA (2000) Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408:187–190

    Article  Google Scholar 

  3. Cescatti A, Marcolla B, Santhana Vannan SK, Pan JY, Román MO, Yang X, Ciais P, Cook RB, Law BE, Matteucci G, Migliavacca M, Moors E, Richardson AD, Seufert G, Schaaf CB (2012) Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sens Environ 121:323–334

    Article  Google Scholar 

  4. Chen X, Liang S, Cao Y, He T, Wang D (2015) Observed contrast changes in snow cover phenology in northern middle and high latitudes from 2001–2014. Sci Rep 5:16820

    Article  Google Scholar 

  5. Climate Council of Australia (2015) Thirsty country: climate change and drought in Australia. Published by the Climate Council of Australia Limited. ISBN: 978-0-9942453-8-0

  6. Colditz RR, Ressl RA, Bonilla-Moheno M (2015) Trends in 15-year MODIS NDVI time series for Mexico. Analysis of Multitemporal Remote Sensing Images (Multi-Temp), 8th International Workshop on the, Annecy, pp. 1–4

  7. Disney M, Lewis P, Thackrah G, Quaife T, Barnsley M (2004) Comparison of MODIS broadband albedo over an agricultural site with ground measurements and values derived from Earth observation data at a range of spatial scales. Int J Remote Sens 25:5297–5317

    Article  Google Scholar 

  8. Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, Zhang T, Quan XW, Xu T, Murray D (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38:L06702

    Article  Google Scholar 

  9. Dong B, Sutton R (2015) Dominant role of greenhouse-gas forcing in the recovery of Sahel rainfall. Nat Clim Chang 5:757–760

    Article  Google Scholar 

  10. Dorigo W, de Jeu R, Chung D, Parinussa R, Liu Y, Wagner W, Fernandez-Prieto D (2012) Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys Res Lett 39:L18405

    Article  Google Scholar 

  11. Godinho S, Gil A, Guiomar N, Costa MJ, Neves N (2016) Assessing the role of Mediterranean evergreen oaks canopy cover in land surface albedo and temperature using a remote sensing-based approach. Appl Geogr 74:84–94

    Article  Google Scholar 

  12. Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth Engine: planetary-scale geosptial analysis for everyone. Remote Sens Environ 202:18–27

    Article  Google Scholar 

  13. Hall A (2004) The role of surface albedo feedback in climate. J Clim 17:1550–1568

    Article  Google Scholar 

  14. Henderson-Sellers A, Wilson MF (1983) Surface albedo data for climatic modeling. Rev Geophys 21:1743–1778

    Article  Google Scholar 

  15. Hoag H (2015) How cities can beat the heat. Nature 524:402–404

    Article  Google Scholar 

  16. Hollander M, Wolfe DA, Chicken E (2015) Nonparametric statistical methods. John Wiley & Sons, Inc., Hoboken

  17. Jin Y, Schaaf CB, Woodcock CE, Gao F, Li X, Strahler AH et al (2003) Consistency of MODIS surface BRDF/Albedo retrievals: 2. Validation. J Geophys Res 108:4159

    Article  Google Scholar 

  18. Knobelspiesse KD, Cairns B, Schmid B, Román OM, Schaaf BC (2008) Surface BRDF estimation from an aircraft compared to MODIS and ground estimates at the Southern Great Plains site. J Geophys Res 113:D20105

    Article  Google Scholar 

  19. Koutsias N, Pleniou M, Mallinis G, Nioti F, Sifakis NI (2013) A rule-based semi-automatic method to map burned areas: exploring the USGS historical Landsat archives to reconstruct recent fire history. Int J Remote Sens 34:7049–7068

    Article  Google Scholar 

  20. Lawrence D, Vandecar K (2014) Effects of tropical deforestation on climate and agriculture. Nat Clim Chang 5:27–36

    Article  Google Scholar 

  21. Levy RC, Remer LA, Kleidman RG, Mattoo S, Ichoku C, Kahn R, Eck TF (2010) Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos Chem Phys 10:10399–10420

    Article  Google Scholar 

  22. Liang S, Fang H, Chen M, Walthall C, Daughtry C, Morisette J et al (2002) Validating MODIS land surface reflectance and albedo products: methods and preliminary results. Remote Sens Environ 83:149–162

    Article  Google Scholar 

  23. Liang S, Zhao X, Liu S, Yuan W, Cheng X, Xiao Z, Zhang X, Liu Q, Cheng J, Tang H, Qu Y, Bo Y, Qu Y, Ren H, Yu K, Townshend J (2013) A long-term global land surface satellite (glass) data-set for environmental studies. Int J Digital Earth 6:5–33

    Article  Google Scholar 

  24. Liu J, Schaaf C, Strahler A, Jiao Z, Shuai Y, Zhang Q et al (2009) Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo retrieval algorithm: dependence of albedo on solar zenith angle. J Geophys Res 114:D01106

    Article  Google Scholar 

  25. Lucht W, Schaaf CB, Strahler AH (2000) An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans Geosci Remote Sens 38:977–998

    Article  Google Scholar 

  26. Lyapustin A, Wang Y, Laszlo I, Kahn R, Korkin S, Remer L, Levy R, Reid JS (2011) Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J Geophys Res 116:D03211

    Google Scholar 

  27. Lyons EA, Jin Y, Randerson JT (2008) Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations. J Geophys Res 113:G02012

    Google Scholar 

  28. Maidment RI, Allan RP, Black E (2015) Recent observed and simulated changes in precipitation over Africa. Geophys Res Lett 42:8155–8164

    Article  Google Scholar 

  29. Moody EG, King MD, Schaaf CB, Platnick S (2008) MODIS-derived spatially complete surface albedo products: spatial and temporal pixel distribution and zonal averages. J Appl Meteorol Climatol 47:2879–2894

    Article  Google Scholar 

  30. Moustafa SE, Rennermalm AK, Román MO, Wang Z, Schaaf CB, Smith LC, Koenig LS, Erb A (2017) Evaluation of satellite remote sensing albedo retrievals over the ablation area of the southwestern Greenland ice sheet. Remote Sens Environ 198:115–125

    Article  Google Scholar 

  31. N’Datchoh ET, Konaré A, Diedhiou A, Diawara A, Quansah E, Assamoi P (2015) Effects of climate variability on savannah fire regimes in West Africa. Earth Syst Dynam 6:161–174

    Article  Google Scholar 

  32. Pepin NC et al (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5:424–430

    Article  Google Scholar 

  33. Román MO, Schaaf CB, Woodcock CE, Strahler AH, Yang X, Braswell RH, Curtis PS, Davis KJ, Dragoni D, Goulden ML (2009) The MODIS (Collection V005) BRDF/albedo product: assessment of spatial representativeness over forested landscapes. Remote Sens Environ 113:2476–2498

    Article  Google Scholar 

  34. Román MO, Schaaf CB, Lewis P, Gao F, Anderson GP, Privette JL, Strahler AH, Woodcock CE, Barnsley M (2010) Assessing the coupling between surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes. Remote Sens Environ 114:738–760

    Article  Google Scholar 

  35. Salomon JG, Schaaf CB, Strahler AH, Gao F, Jin Y (2006) Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the Aqua and Terra platforms. IEEE Trans Geosci Remote Sens 44:1555–1565

    Article  Google Scholar 

  36. Sampaio G, Nobre C, Costa MH, Satyamurty P, Soares-Filho BS, Cardoso M (2007) Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys Res Lett 34:L17709

    Article  Google Scholar 

  37. Schaaf C et al (2002) First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sens Environ 83:135–148

    Article  Google Scholar 

  38. Schaepman-Strub G, Schaepman ME, Painter TH, Dangel S, Martonchik JV (2006) Reflectance quantities in optical remote sensing-definitions and case studies. Remote Sens Environ 103:27–42

    Article  Google Scholar 

  39. Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4:156–159

    Article  Google Scholar 

  40. Shuai Y, Schaaf CB, Strahler AH, Liu J, Jiao Z (2008) Quality assessment of BRDF/albedo retrievals in MODIS operational system. Geophys Res Lett 35:L05407

    Article  Google Scholar 

  41. Ummenhofer CC, Sen Gupta A, England MH, Reason CJC (2009a) Contributions of Indian Ocean sea surface temperatures to enhanced East African rainfall. J Clim 22:993–1013

    Article  Google Scholar 

  42. Ummenhofer CC, England MH, Mclntosh PC, Meyeers GA, Pook MJ, Risbey JS, Sen Gupta A, Taschetto AS (2009b) What causes southeast Australia’s worst droughts? Geophys Res Lett 36:1–5

    Article  Google Scholar 

  43. Van Dijk AIJM, Beck HE, Crosbie RS, De Jeu RAM, Liu YY, Podger GM, Timbal B, Viney NR (2013) The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour Res 49:1040–1057

    Article  Google Scholar 

  44. Wang KC, Liu JM, Zhou XJ, Sparrow M, Ma M, Sun Z et al (2004) Validation of the MODIS global land surface albedo product using groundmeasurements in a semidesert region on the Tibetan Plateau. J Geophys Res 109:D05107

    Google Scholar 

  45. Wang Z, Barlage M, Zeng XB, Dickinson RE, Schaaf CB (2005) The solar zenith angle dependence of desert albedo. Geophys Res Lett 32:L05403

    Article  Google Scholar 

  46. Wang K, Liang S, Schaaf CB, Strahler AH (2010) Evaluation of Moderate Resolution Imaging Spectroradiometer land surface visible and shortwave albedo products at FLUXNET sites. J Geophys Res 115:D17107

    Article  Google Scholar 

  47. Wang Z, Schaaf CB, Chopping MJ, Strahler AH, Wang J, Román MO, Rocha AV, Woodcock CE, Shuai Y (2012) Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snowalbedo product (MCD43A) over tundra. Remote Sens Environ 117:264–280

    Article  Google Scholar 

  48. Wang B, Liu J, Kim HJ, Webster PJ, Yim SY, Xiang B (2013) Northern Hemisphere summer monsoon intensified by mega-ElNiño/southern oscillation and Atlantic multidecadal oscillation. Proc Natl Acad Sci U S A 110:5347–5352

    Article  Google Scholar 

  49. Wang Z, Schaaf CB, Strahler AH, Chopping MJ, Román MO Shuai Y, Woodcock CE, Hollinger DY, Fitzjarrald DR (2014) Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens Environ 140:60–77

    Article  Google Scholar 

  50. Wu X, Wen J, Xiao Q, Liu Q, Peng J, Dou B, Li X, You D, Tang Y, Liu Q (2016) Coarse scale in situ albedo observations over heterogeneous snow-free land surfaces and validation strategy: a case of MODIS albedo products preliminary validation over northern China. Remote Sens Environ 184:25–39

    Article  Google Scholar 

  51. Xu B, Cao J, Hansen J, Yao T, Joswia DR, Wang N, Wu G, Wang M, Zhao H, Yang W, Liu L, He J (2009) Black soot and the survival of Tibetan glaciers. Proc Natl Acad Sci U S A 106:22114–22118

    Article  Google Scholar 

  52. Zhang X, Liang S, Wang K, Li L, Gui S (2010) Analysis of global land surface shortwave broadband albedo from multiple data sources. IEEE J Sel Top Appl Earth Observ Remote Sens 3:296–305

    Article  Google Scholar 

  53. Zhao M, Running W (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Individual contribution of each co-author to the reported research: N. C. contributed to data analysis and wrote the paper; Z. M. developed the GEE codes for the MODIS BRDF products processing, performed the statistical analysis and reviewed the paper; N. G. ran the developed codes for the whole MODIS archive globally, contributed to data analysis and reviewed the paper.

Corresponding author

Correspondence to Nektarios Chrysoulakis.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 83 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chrysoulakis, N., Mitraka, Z. & Gorelick, N. Exploiting satellite observations for global surface albedo trends monitoring. Theor Appl Climatol 137, 1171–1179 (2019). https://doi.org/10.1007/s00704-018-2663-6

Download citation