Skip to main content

Advertisement

Log in

Applications of multiple change point detections to monthly streamflow and rainfall in Xijiang River in southern China, part II: trend and mean

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This article, as part II, illustrates applications of other two algorithms, i.e., the scanning F test of change points in trend and the scanning t test of change points in mean, to both series of the normalized streamflow index (NSI) at Makou section in the Xijiang River and the normalized precipitation index (NPI) over the watershed of Xijiang River. The results from these two tests show mainly positive coherency of changes between the NSI and NPI. However, some minor negative coherency patches may expose somewhat impacts of human activities, but they were often associated with nearly normal climate periods. These suggest that the runoff still depends upon well the precipitation in the Xijiang catchment. The anthropogenic disturbances have not yet reached up to violating natural relationship on the whole in this river.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bayley GV, Hammersley JM (1946) The effective number of independent observations in an auto-correlated time series. J Roy Statist Soc 8(1B):184–197

    Google Scholar 

  • China Meteorological Administration National Climate Center (1998) 98 large scale floods in China and climatic abnormalies. Meteorological Press, Beijing, p 139 (in Chinese)

    Google Scholar 

  • Chen Y (2002) Normative and effective engineering management for Pingban hydropower station project. Hongshui River 21(4):1–3 (in Chinese)

    Google Scholar 

  • Chen J, Gupta AK (2012) Parametric statistical change point analysis: with applications to genetics. Medicine and Finance, Birkhauser, Boston

    Book  Google Scholar 

  • Foufoula-Georgiou E, Kumar P (eds) (1994) Wavelets in geophysics. Academic Press, SanDiego

    Google Scholar 

  • Jiang J (2009) Scanning detection of multi-scale significant change points in subseries means, variances, trends and correlation, in: Proceedings of 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, pp. 609-613

  • Jiang, J., Gu, X., Timonen, M., Helama, S., Mielikainen, K., 2015: Chapter 5: significant change points of subperiod levels in tree-ring chronologies as indications of climate changes, in: Justin A. Daniels Edit: <Advances in Environmental Research>, 37, NOVA Publisher, New York, 2015, p. 109–146

  • Li S, Zhong H (2008) Introduction to the auto-observation system for water regimen at hydropower station Longtan. HongShui River 27(1):82–85 (in Chinese)

    Google Scholar 

  • Lund R, Reeves J (2002) Detection of undocumented change points: a revision of the two-phase regression model. J Clim 15:2547–2554

    Article  Google Scholar 

  • Luo Y (2005) A study of restoring annual sreamflow at Lehuang hydro-station under influence of a hydropower-station construction in Guyihe river. Pearl River 2005(2):48–50 (in Chinese)

    Google Scholar 

  • Luo X, Zeng E, Ji R, Wang C (2007) Effects of in-channel sand excavation on the hydrology of the Pearl River Delta. China J Hydrol 343:230–239

    Article  Google Scholar 

  • Ni Y, Zhang S (2012) A post-evaluation of the Baise hydro-junction. Pearl River 33(06):65–67. https://doi.org/10.3969/j.issn.1001-9235.2012.06.020 (in Chinese)

    Google Scholar 

  • Von Storch H, Zwiers F (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Walling DE (1995) Suspended sediment yields in a changing environment. In: Gurnell A, Petts G (eds) Changing river channels. John Wiley and Sons, Chichester, pp 149–176

    Google Scholar 

  • Walling, D.E., 1997: The response of sediment yields to environmental change, in: Human Impact on Erosion and Sedimentation (proc. Rabat symposium), IAHS Publication, IAHS Press, Wallingford, 245, pp. 77–89

  • Yao Z (1984) Basic statistics in climatology (in Chinese). Sciences Press, Beijing

    Google Scholar 

  • Yue X, Mu X, Zhao G, Shao H, Gao P (2014) Dynamic changes of sediment load in the middle reaches of the Yellow River basin, China and implications for eco-restoration. Ecol Eng 73:64–72

    Article  Google Scholar 

  • Zhang SK (2001) A brief introduction to Longtan Hydropower Station in Hongshuihe river. Gungxi DIanli Jianshe Keji Xinxi 2001(3):8–9

    Google Scholar 

  • Zhang Q, Liu C, Xu C, Xu Y, Jiang T (2006) Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin, China. J Hydrol 324:255–265

    Article  Google Scholar 

  • Zhang Q, Xu C, Chen Y, Jiang J (2009) Abrupt behaviors of the streamflow of the Pearl River basin and implications for hydrological alterations across the Pearl River Delta, China. J Hydrol 377:274–283

    Article  Google Scholar 

  • Zhu, Y., Jiang, J., Huang, C., Chen, Y., Zhang, Q., 2018: Applications of multiple change point detections to monthly streamflow and rainfall in Xijiang, southern of China, part I: correlation and variance, submitted together with this manuscript

Download references

Acknowledgements

This work is jointly supported by the Direct Grant from The Chinese University of Hong Kong, China (project no. 4052134), by the National Key Research and Development Program of China (2017YFC1502005), the China Meteorological Administration Special Found for Climate Change (CCSF201806), the China Meteorological Administration Special Found for Development of Weather Forecasting Key Technologies (YBGJXM(2018) 03-15), the National Natural Science Foundation of China (41505079 and 40705026), the National Department of Science and Technology - 863 projects (2008AA09A404-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Jiang.

Additional information

Jianmin Jiang is a visited scientist in The Chinese University of Hong Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.D., Jiang, J., Zhu, Y. et al. Applications of multiple change point detections to monthly streamflow and rainfall in Xijiang River in southern China, part II: trend and mean. Theor Appl Climatol 136, 489–497 (2019). https://doi.org/10.1007/s00704-018-2475-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-018-2475-8

Keywords

Navigation