Nonchaotic and globally synchronized short-term climatic variations and their origin

Abstract

Careful computations of atmospheric power spectra are done. These computations reveal that these spectra are continuous in the range of timescales from 2 days to 1 year, and so they confirm that weather variations are chaotic; however, the continuity of a part of the atmospheric power spectra, corresponding to the periods from 2 years to one decade is questioned. This part is prominent by the existence of several narrow bands of increased spectral density centered at the subharmonics 2:1, 3:1, and 4:1 of the Chandler wobble in the Earth’s pole motion (~ 1.2 years); the superharmonics 1:2, 1:3, and 1:4 of the Luni-Solar nutation of the Earth’s rotation axis (~ 18.6 years) as well as the superharmonics 1:2, 1:3, and 1:4 of the 11-year cycle of the Sun spots. The existence of similar bands in the El Niño–Southern Oscillation (ENSO) power spectra was recognized many years ago; however, it turns out that the above spectral bands also are seen in spectra of the atmospheric characteristics outside of tropics. Moreover, the respective climatic variations are globally synchronized. The synchronization takes place because the above-mentioned external periodicities must influence short-term climatic variations everywhere on the Earth. It is very probable that the periods of the external periodicities indicated are incommensurable with each other. Therefore, if these periodicities actually influence short-term climatic variations, they would have to do it discordantly. As a result, no resonances can exist which could make the affected climatic variations to be chaotic. A linear dependence of logarithms of serial numbers of the spectral bands on logarithms of the band magnitudes as well as a linear decrease of the accumulated sum of the squared autocorrelations of the respective atmospheric characteristics confirm that the dynamics of the interannual to decadal climatic variations are not chaotic.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Allan RJ, Ansell TJ (2006) A new globally-complete monthly historical gridded mean sea level pressure data set (HadSLP2): 1850-2004. J Clim 19:5816–5846

    Article  Google Scholar 

  2. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  3. Blekhman II (1971) Synchronization of the dynamical systems. Nauka, Moscow 896 p. – in Russian

    Google Scholar 

  4. Braganza K, Gergis JL, Power SB, Risbey JS, Fowler AM (2009) A multi-proxy index of the El Niño-southern oscillation, A.D. 1525–1982. J Geophys Res 114:D05106. https://doi.org/10.1029/2008JD010896

    Article  Google Scholar 

  5. Bryson RA, Starr TB (1977) Chandler tides in the atmosphere. J Atmos Sci 34:1975–1986

    Article  Google Scholar 

  6. Byshev VI, Neiman VG, Romanov YA, Serykh IV (2012) El Niño as a consequence of the global oscillation in the dynamics of the earth's climatic system. Dokl Earth Sci 446(Part 1):1089–1094

    Article  Google Scholar 

  7. Byshev VI, Neiman VG, Romanov YA, Serykh IV, Sonechkin DM (2016) Statistical significance and climatic role of the global atmospheric oscillation. Oceanology 56(2):165–171

    Article  Google Scholar 

  8. Chao BF (1985) Excitation of the Earth's Chandler Wobble by southern oscillation/El Nino, 1900–1979. National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt 19 pp

    Google Scholar 

  9. Climate Prediction Center (1989–2016) Climate Diagnostics Bulletin. NOAA/National Weather Service, Wash. (D.C.)

  10. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28

  11. Desai SD (2002) Observing the pole tide with satellite altimetry. J Geophys Res 107(C11):3186. https://doi.org/10.1029/2001JC001224

    Article  Google Scholar 

  12. Ding RQ, Li PJ, Zheng F, Feng J, Liu DQ (2015) Estimating the limit of decadal-scale climate predictability using observational data. Clim Dyn 46(5):1563–1580

    Google Scholar 

  13. Eubanks TM, Stepp JA, Dickey JO (1986) Earth rotation: solved and unsolved problems. Springer, Dordrecht NATO ASI Series: Mathematical and Physical Sciences 187 pp

    Google Scholar 

  14. Fedorov AV (2002) The response of the coupled tropical ocean – atmosphere to westerly wind bursts. Q J R Meteorol Soc 128:1–23

    Article  Google Scholar 

  15. Fedorov AV, Filander SG (2000) Is El Nino changing? Science 288:1997–2002

    Article  Google Scholar 

  16. Feudel U, Kuznetsov S, Pikovsky A (2006) Strange nonchaotic attractors. World Scientific, Singapore 228 p

    Google Scholar 

  17. Fraedrich K, Blender R, Zhu X (2009) Continuum climate variability: long-term memort, scaling, and 1/f-noise. Int J Mod Phys B 23:5403–5416

    Article  Google Scholar 

  18. Ghil M (1985) Theoretical climate dynamics: an introduction. In: Ghil M, Benzi R, Parisi G (eds) Turbulence and predictability in geophysical fluid dynamics and climate dynamics. North Holland, New York, pp 347–402

    Google Scholar 

  19. Gilman DL, Fuglister FJ, Mitchell JM (1963) On the power spectrum of “red noise”. J Atmos Sci 20:182–184

    Article  Google Scholar 

  20. Grebogi C, Ott E, Pelikan S, Yorke JA (1984) Strange attractors that are not chaotic. Physica D 13:261–268

    Article  Google Scholar 

  21. Harrison DE, Vecchi GA (1997) Westerly wind events in the tropical Pacific, 1986–95. J Clim 10:3131–3156

    Article  Google Scholar 

  22. Hirahara S, Ishii M, Fukuda Y (2014) Centennial-Scale Sea surface temperature analysis and its uncertainty. J Clim 27:57–75

    Article  Google Scholar 

  23. Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC, Smith TM, Thorne PW, Woodruff SD, Zhang HM (2015) Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J Clim 28(3):911–930

    Article  Google Scholar 

  24. Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, Menne MJ, Smith TM, Vose RS, Zhang H (2017) Extended reconstructed sea surface temperature version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J Clim 30:8179–8205. https://doi.org/10.1175/JCLI-D-16-0836.1

    Article  Google Scholar 

  25. Huybers P, Curry W (2006) Links between annual, Milankovitch and continuum temperature variability. Nature 441(7091):329–332

  26. Ikeda K, Matsumoto K (1986) Study of a high-dimensional chaotic attractor. J Stat Phys 44(5/6):955–983

    Article  Google Scholar 

  27. Ivashchenko NN, Kotlyakov VM, Sonechkin DM, Vakulenko NV (2013) On the nature of the Pliocene/Pleistocene glacial cycle lengthening. Global Perspective on Geography 1:9–20

    Google Scholar 

  28. Ivashchenko NN, Kotlyakov VM, Sonechkin DM, Vakulenko NV (2014) On bifurcations inducing glacial cycle lengthening during Pliocene/Pleistocene epoch. Intern J Bifurcation Chaos 24(8):1440018 (8)

    Article  Google Scholar 

  29. Jiang N, Neelin JD, Ghil M (1995) Quasi-quadrennial and quasi-biennial variability in the equatorial Pacific. Clim Dyn 12:101–112

    Article  Google Scholar 

  30. Jin FF, Neelin JD, Ghil M (1994) El Nino on the devil’s: annual subharmonic steps to chaos. Science 264:70–72

    Article  Google Scholar 

  31. Jones PD, Lister DH, Osborn TJ (2012) Hemispheric and large-scale land surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res 117:D05127

    Google Scholar 

  32. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  33. Kobayashi S, Ota Y, Harada Y et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93(1):5–48

    Article  Google Scholar 

  34. Li JP, Ding RQ (2011) Temporal-spatial distribution of atmospheric predictability limit by local dynamical analogues. Mon Weather Rev 139:3265–3283

    Article  Google Scholar 

  35. Liu W, Huang B, Thorne PW, Banzon VF, Zhang HM, Freeman E, Lawrimore J, Peterson TC, Smith TM, Woodruff SD (2015) Extended reconstructed sea surface temperature version 4 (ERSST.v4): part II. Parametric and structural uncertainty estimations. J Clim 28(3):931–951

    Article  Google Scholar 

  36. Lorenz EN (1984) A very narrow spectral band. J Stat Phys 36:1–14

    Article  Google Scholar 

  37. Lorenz EN (2006) Predictability – a problem partly solved. In: Palmer T, Hagedorn R (eds) Predictability of weather and climate, pp 40–58

    Google Scholar 

  38. Lovejoy S (2018) Spectra, intermittency, and extremes of weather, macroweather and climate. Sci Rep 8:12697. https://doi.org/10.1038/s41598-018-30829-4

    Article  Google Scholar 

  39. Lovejoy S, Schertzer D (2012) Low frequency weather and emergence of the climate. In: Sharma AS et al (eds) Extreme events and natural hazard. The complexity perspective. AGU, Washington, D.C., pp 231–254

    Google Scholar 

  40. Lovejoy S, Schertzer D (2013) The weather and climate: emergent laws and multifractal cascades. Cambridge Univ. Press, Cambridge 496 pp

    Google Scholar 

  41. Madden RA, Julian PR (1994) Observations of the 40-50 day tropical oscillation – a review. Mon Weather Rev 122:814–837

    Article  Google Scholar 

  42. Maksimov IV (1952) On “pole tide” in seas and atmosphere of the Earth. Dokl Acad Sci 86:673–676 in Russian

    Google Scholar 

  43. Maksimov IV (1955) “Polar tide” in the sea and the Earth's atmosphere. Trudy Instituta Okeanologii AN SSSR 8:92–118 in Russian

    Google Scholar 

  44. Maksimov IV (1956) Nutation standing wave in the ocean and its geographical investigation. Izvestiya Akademii Nauk SSSR, ser. Geograficheskaya 1:14–34 in Russian

    Google Scholar 

  45. McPhaden MJ, Busalacchi AJ, Cheney R, Donguy JR, Gage KS, Halpern D, Ji M, Julian P, Meyers G, Mitchum GT (1998) The Tropical Ocean-Global Atmosphere (TOGA) observing system: a decade of progress. J Geophys Res 103(14):169–14,240

    Google Scholar 

  46. Monin AS, Yaglom AM (1975) Statistical fluid mechanics. Vol. II mechanics of turbulence. MIT Press, Cambridge 896 p

    Google Scholar 

  47. Osprey SM, Ambaum MHP (2011) Evidence for the chaotic origin of northern annular mode variability. Geophys Res Lett 38:L15702. https://doi.org/10.1029/2011GL048181

    Article  Google Scholar 

  48. Pelletier J (1998) The power-spectral density of atmospheric temperature from time scales of 10-2 to 106 yr. Earth Planet Sci Lett 158:157–164

    Article  Google Scholar 

  49. Peng JB, Chen LT, Zhang QY (2014) The relationship between the El Niño/La Niña cycle and the transition chains of four atmospheric oscillations. Part I: the four oscillations. Adv Atmos Sci 31(2):468–479. https://doi.org/10.1007/s00376-013-2275-0

    Article  Google Scholar 

  50. Philander SG (1999) A review of tropical ocean-atmosphere interactions. Tellus 51 A-B:71–90

    Google Scholar 

  51. Pikovskii A, Rosenblum M, Kurths J (2001) Synchronization. A universal concept in dissipative systems. Cambridge Univ. Press, Cambridge

    Google Scholar 

  52. Pikovsky A, Politi A (2016) Lyapunov exponents. A tool to explore complex dynamics. Cambrifge Univ Press, Cambridge 295 p

    Google Scholar 

  53. Rayner NA, Parker DE, Horton EB et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407

    Article  Google Scholar 

  54. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  55. Romero-Centeno R, Zavala-Hidalgo J, Gallegos A, O’Brien JJ (2003) Isthmus of Tehuantepec wind climatology and ENSO signal. J Clim 16:2628–2639

    Article  Google Scholar 

  56. Saffman PG (1967) The large scale structure of homogeneous turbulence. J Fluid Mech 27(3):581–593

    Article  Google Scholar 

  57. Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli PG, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high resolution coupled general circulation model. J Clim 24:4368–4384

    Article  Google Scholar 

  58. Serykh IV (2017) A Comparison of the structure and dynamics of global atmospheric oscillation in reality and in the CMIP5 climate models // IOP conference series. Earth Environ Sci 96:012006

    Google Scholar 

  59. Serykh IV, Sonechkin DM (2016) Confirmation of the oceanic pole tide influence on El Niño. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 13(2):44–52

    Article  Google Scholar 

  60. Serykh IV, Sonechkin DM (2017) Manifestations of motions of the Earth’s pole in the El Niño –Southern Oscillation rhythms. Dokl Earth Sci 472(2):256–259

    Article  Google Scholar 

  61. Sidorenkov NS (2009) The interaction between Earth's rotation and geophysical processes. Wiley-VCH & Co. KCaA, Weinheim 305 p

    Google Scholar 

  62. Sonechkin DM, Ivashchenko NN (2001) On the role of a quasiperiodic forcing in the interannual and interdecadal climate variations. CLIVAR Exchanges 6(1):5–6

    Google Scholar 

  63. SSALTO-DUACS (2015) Ssalto/Duacs user handbook: (M)SLA and (M)ADT near-real time and delayed time products, version 4 rev. 4, rep. SALP-MU-P-EA-21065-CLS. Aviso, Ramonville-St-Agne 74 pp

    Google Scholar 

  64. Stickler A, Brönnimann S, Valente MA, Bethke J, Sterin A, Jourdain S, Roucaute E, Vasquez MV, Reyes DA, Allan R, Dee D (2014) ERA-CLIM: historical surface and upper-air data for future reanalyses. Bull Am Meteorol Soc 95(9):1419–1430

    Article  Google Scholar 

  65. Tanaka Y, Yasuda I, Hasumi H (2012) Effects of the 18.6-yr modulation of tidal mixing on the north pacific bidecadal climate variability in a coupled climate model. J Clim 25(21):7625–7642. https://doi.org/10.1175/JCLI-D-12-00051.1

    Article  Google Scholar 

  66. Taylor KE, Stouffer RJ, Meehl GA (2012) Overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  67. Torrence C, Compo GP (1997) A practical guide to wavelet analysys. Bull Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  68. Trenberth KE (1976) Spatial and temporal variations of the southern oscillation. Q J R Meteorol Soc 102:639–653

    Article  Google Scholar 

  69. Trenberth KE, Shea D (1987) On the evolution of the southern oscillation. Mon Weather Rev 115(12):3078–3096

    Article  Google Scholar 

  70. Tziperman E, Stone L, Cane MA, Jarosh H (1994) El Nino chaos: overlapping of resonances between the seasonal cycle and the Pacific Ocean – atmosphere oscillator. Science 264:72–74

    Article  Google Scholar 

  71. Tziperman E, Zebiak SE, Cane MA (1997) Mechanisms of seasonal – ENSO interaction. J Atmos Sci 54:61–71

    Article  Google Scholar 

  72. Tziperman E, Cane MA, Zebiak SE et al (1998) Locking of El Nino’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J Clim 9:2191–2199

    Article  Google Scholar 

  73. Vakulenko NV, Sonechkin DM (2011) Evidence of the solar activity's effect on El Nino southern oscillation. Oceanology 51(6):935–939

    Article  Google Scholar 

  74. Vakulenko NV, Ivashchenko NN, Kotlyakov VM, Sonechkin DM (2011) On periods of multiplying bifurcation of Early Pleistocene glacial cycles. Dokl Earth Sci 436(Part 2):245–248

    Article  Google Scholar 

  75. Wahr JM (1985) Deformation induced by polar motion. J Geophys Res 90(B11):9363–9368

    Article  Google Scholar 

  76. Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–925

    Article  Google Scholar 

  77. Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust AU-15(2):70–73

    Article  Google Scholar 

  78. Wirtki K (1975) El Niño - the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–584

    Article  Google Scholar 

  79. Yasuda I (2009) The 18.6-year period moon-tidal cycle in Pacific decadal oscillation reconstructed from tree-rings in western North America. Geophys Res Lett 36:L05605. https://doi.org/10.1029/2008GL036880

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. V. Serykh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 7989 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serykh, I.V., Sonechkin, D.M. Nonchaotic and globally synchronized short-term climatic variations and their origin. Theor Appl Climatol 137, 2639–2656 (2019). https://doi.org/10.1007/s00704-018-02761-0

Download citation