Predictive value of Keetch-Byram Drought Index for cereal yields in a semi-arid environment

Abstract

Meteorological drought indices associated with soil moisture status have potential for varying applications including predictive power for crop yields estimation. The Keetch-Byram Drought Index (KBDI) was initially developed to estimate forest flammability, based on quantification of the moisture deficiency in upper soil layer as a function of daily precipitation and maximum air temperature. In this study, we characterized the utility of KBDI to accurately trace and monitor vegetation change and crop yield fluctuation in a semi-arid environment. It is tried to find any temporal association for both the 16-day MODIS-derived NDVI and KBDI from 2002 to 2012 and the correlation between KBDI and wheat and barley yield from 1984 to 2010. Correlation between KBDI and NDVI showed a general seasonal pattern with strongest correlation in mid-growing season, but this varied across study locations. Warmer locations with very sparse vegetation showed weaker association between KBDI and NDVI. Although a robust correlation between KBDI and winter cereal crop yield was not achieved based on winter (wet and cold season) data, spring cereal crop yield was correlated with KBDI.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Arpaci A, Eastaugh CS, Vacik H (2013) Selecting the best performing fire weather indices for Austrian ecoregions. Theor Appl Climatol 114(3-4):393–406. https://doi.org/10.1007/s00704-013-0839-7

    Article  Google Scholar 

  2. Bannayan M, Sanjani S (2011) Weather conditions associated with irrigated crops in an arid and semiarid environment. Agric For Meteorol 151(12):1589–1598. https://doi.org/10.1016/j.agrformet.2011.06.015

    Article  Google Scholar 

  3. Bannayan M, Sanjani S, Alizadeh A, Sadeghi Lotfabadi S, Mohamadian A (2010) Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crop Res 118:105–114. https://doi.org/10.1016/j.fcr.2010.04.011

    Article  Google Scholar 

  4. Bannayan M, Lakzian A, Gorbanzadeh N, Roshani A (2011) Variability of growing season indices in northeast of Iran. Theor Appl Climatol 105(3-4):485–494. https://doi.org/10.1007/s00704-011-0404-1

    Article  Google Scholar 

  5. Bannayan M, Mansoori H, Eyshi Rezaei E (2014) Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran. Int J Biometeorol 58:395. https://doi.org/10.1007/s00484-013-0635-1

    Article  Google Scholar 

  6. Beranová R, Kyselý J (2015) Links between circulation indices and precipitation in the Mediterranean in an ensemble of regional climate models. Theor Appl Climatol 123(3-4):693–701. https://doi.org/10.1007/s00704-015-1381-6

    Article  Google Scholar 

  7. Brolley JM, O’Brien JJ, Schoof J, Zierden D (2007) Experimental drought threat forecast for Florida. Agric For Meteorol 145(1-2):84–96. https://doi.org/10.1016/j.agrformet.2007.04.003

    Article  Google Scholar 

  8. Brown JF, Wardlow BD, Tsegaye T, Hayes MJ, Reed BC (2008) The vegetation drought response index: a new integrated approach for monitoring drought stress in vegetation. GISci Remote Sens 45(1):1548–1603. https://doi.org/10.2747/1548-1603.45.1.16

    Article  Google Scholar 

  9. Chen CF, Nguyen TS, Li YC (2011) Monitoring of soil moisture variability in relation to rice cropping systems in the Vietnamese Mekong Delta using MODIS data. Appl Geogr 31(2):463–475. https://doi.org/10.1016/j.apgeog.2010.10.002

    Article  Google Scholar 

  10. Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knoh A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourciva JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533. https://doi.org/10.1038/nature03972

    Article  Google Scholar 

  11. Darmawan S, Takeuchi W, Shofiyati R, Sari D K, Wikantika K (2014) Seasonal analysis of precipitation, drought and vegetation index in Indonesian paddy field based on remote sensing data. IOP Conf Ser Environ Earth Sci 20. https://doi.org/10.1088/1755-1315/20/1/012049

    Article  Google Scholar 

  12. Dimitrakopoulos AP, Bemmerzouk AM (2003) Predicting live herbaceous moisture content from a seasonal drought index. Int J Biometeorol 47:73–79. https://doi.org/10.1007/s00484-002-0151-1

    Article  Google Scholar 

  13. Dolling K, Chu P-S, Fujioka F (2005) A climatological study of the Keetch/Byram drought index and fire activity in the Hawaiian Islands. Agric For Meteorol 133(1-4):17–27. https://doi.org/10.1016/j.agrformet.2005.07.016

    Article  Google Scholar 

  14. Eyshi Rezaei E, Mohammadian A, Koohi M, Bannayan M (2013) Comparative analysis of drought indices for drought zone scheme of northern Khorasan Province of Iran. Not Sci Biol 3(3):62–66

    Article  Google Scholar 

  15. Farhangfar S, Bannayan M, Khazaei HM, Mousavi Baygi M (2015) Vulnerability assessment of wheat and maize production affected by drought and climate change. Int J Disaster Risk Sci 13:37–51. https://doi.org/10.1016/j.ijdrr.2015.03.006

    Article  Google Scholar 

  16. Garcia-Prats A, Del Campo A, Fernandes TJG, Molina AJ (2015) Development of a Keetch and Byram—based drought index sensitive to forest management in Mediterranean conditions. Agric For Meteorol 205:40–50. https://doi.org/10.1016/j.agrformet.2015.02.009

    Article  Google Scholar 

  17. Gausman HW (1974) Leaf reflectance of near-infrared. Photogramm Eng 10:183–191

    Google Scholar 

  18. Houghton J T, Ding Y, Giggs D, van Noguet M, del Linden P, Dai X, Maskell A, Johnson C A (2001) Climate change: the scientific basis. Cambridge University Press, Cambridge doi:https://doi.org/10.1002/qj.200212858119, 128, 581, 1038, 1039

    Google Scholar 

  19. Hu MQ, Mao F, Sun H, Hou YY (2011) Study of normalized difference vegetation index variation and its correlation with climate factors in the three-river-source region. Int J Appl Earth Obs 13(11):24–33. https://doi.org/10.1080/01431160210154812

    Article  Google Scholar 

  20. Janis M, Johnson MB, Forthun G (2002) Near-real time mapping of Keetch-Byram drought index in the south-eastern United States. Int J Wildland Fire 11(4):281–289. https://doi.org/10.1071/WF02013

    Article  Google Scholar 

  21. Katiraie-Boroujerdy P, Nasrollahi N, Hsu K, Sorooshian S (2016) Quantifying the reliability of four global datasets for drought monitoring over a semiarid region. Theor Appl Climatol 123(1-2):387–398. https://doi.org/10.1007/s00704-014-1360-3

    Article  Google Scholar 

  22. Keetch J J, Byram O M (1968) A drought index for forest fire control. USDA For Serv Southeastern For and Range Exp Stn Res Pap SE-38

  23. Klink K, Wiersma JJ, Crawford CJ, Stuthman DD (2014) Impacts of temperature and precipitation variability in the Northern Plains of the United States and Canada on the productivity of spring barley and oat. Int J Climatol 34(8):2805–2818. https://doi.org/10.1002/joc.3877

    Article  Google Scholar 

  24. Kogan FN (1990) Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int J Remote Sens 11(8):1405–1419. https://doi.org/10.1080/01431169008955102

    Article  Google Scholar 

  25. Kogan FN (1995) Droughts of the late 1980s in the United States as derived from NOAA polar orbiting satellite data. Bull Am Meteorol Soc 76(5):655–668. https://doi.org/10.1175/1520-0477(1995)076<0655:DOTLIT>2.0.CO;2

    Article  Google Scholar 

  26. Liu Y, Stanturf J, Goodrick S (2010) Wildfire potential evaluation during a drought event with a regional climate model and NDVI. Eco Inform 5(5):418–428. https://doi.org/10.1016/j.ecoinf.2010.04.001

    Article  Google Scholar 

  27. Miller TD (1999) Growth stages of wheat: identification and understanding improve crop management. SCS-1999-16. Texas Agricultural Extension Service, the Texas A&M University System, College Station

    Google Scholar 

  28. Narasimhan B, Srinivasan R (2005) Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring. Agric For Meteorol 133(1-4):69–88. https://doi.org/10.1016/j.agrformet.2005.07.012

    Article  Google Scholar 

  29. Nazemosadat MJ (2000) Winter drought in Iran: association with ENSO. Drought Netw News 13:1

    Google Scholar 

  30. Peltonen-Sainio P, Jauhiainen L, Hakala K (2011) Crop responses to temperature and precipitation according to long-term multilocation trials at high-latitude conditions. J Agric Sci 148(01):49–62. https://doi.org/10.1017/S0021859610000791

    Article  Google Scholar 

  31. Petros G, Antonis M, Marianthi T (2011) Development of an adapted empirical drought index to the Mediterranean conditions for use in forestry. Agric For Meteorol 151(2):241–250. https://doi.org/10.1016/j.agrformet.2010.10.011

    Article  Google Scholar 

  32. Piao S, Mohammat A, Fang J, Cai Q, Feng J (2006) NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob Environ Chang 16(4):340–348. https://doi.org/10.1016/j.gloenvcha.2006.02.002

    Article  Google Scholar 

  33. Quiring SM, Ganesh S (2010) Evaluating the utility of the vegetation condition index (VCI) for monitoring meteorological drought in Texas. Agric For Meteorol 150(3):330–339. https://doi.org/10.1016/j.agrformet.2009.11.015

    Article  Google Scholar 

  34. Rouse JW, Hass RH, Schell JA (1974) Monitoring vegetation systems in the Great Plains with ERTS. In: The third earth resources technology Satellite-1 symposium, Greenbelt, MD, 309–317

  35. Sellers PJ, Berry J, Collatz GJ, Field CB, Hall FG (1992) Canopy reflectance, photosynthesis and transpiration. III A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens Environ 42(3):187–216. https://doi.org/10.1016/0034-4257(92)90102-P

    Article  Google Scholar 

  36. Taufik M, Setiawan BI, Van Lanen HAJ (2015) Modification of a fire drought index for tropical wetland ecosystems by including water table depth. Agric For Meteorol 203:1–10. https://doi.org/10.1016/j.agrformet.2014.12.006

    Article  Google Scholar 

  37. Trnka M, Dubrovsky M, Zalud Z (2004) Climate change impacts and adaptation strategies in spring barley production in the Czech Republic. Clim Chang 64(1/2):227–255. https://doi.org/10.1023/B:CLIM.0000024675.39030.96

    Article  Google Scholar 

  38. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150. https://doi.org/10.1016/0034-4257(79)90013-0

    Article  Google Scholar 

  39. Tucker CJ, Sellers PJ (1986) Satellite remote sensing of primary production. Int J Remote Sens 7(11):1395–1416. https://doi.org/10.1080/01431168608948944

    Article  Google Scholar 

  40. Wang J, Rich PM, Price KP (2003) Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int J Remote Sens 24(11):2345–2364. https://doi.org/10.1080/01431160210154812

    Article  Google Scholar 

  41. Xanthopoulos G, Maheras G, Gouma V, Gouvas M (2006) Is the Keetch–Byram drought index (KBDI) directly related to plant water stress? Forest Ecol Manag 234(supplement 1):S27. https://doi.org/10.1016/j.foreco.2006.08.043

    Article  Google Scholar 

  42. Zhang F, Zhang L, Wang X, Hung J (2013) Detecting agro-droughts in southwest of China using MODIS satellite data. J Integr Agric 12(1):159–168. https://doi.org/10.1016/S2095-3119(13)60216-6

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Grace Crummer (Institute for Sustainable Food Systems, University of Florida) for editing the manuscript to improve the language.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hossein Zare.

Appendix 1

Appendix 1

Calculation of KBDI

To calculate the index, daily maximum temperature and precipitation data for a 20-year period (1990–2010) for the stations of the study area (Table 1 and Fig. 1) were collected. KBDI was then calculated as follows in C# programming language.

$$ \mathsf{DF}=\frac{\left[\mathsf{800}-{\mathsf{KBDI}}_{\mathit{\mathsf{t}}-\mathsf{1}}\right]\left[\mathsf{0.968}\mathsf{\exp}\left(\mathsf{0.0875}{\mathit{\mathsf{T}}}_{\mathsf{max}}+\mathsf{1.5552}\right)-\mathsf{8.30}\right]}{\mathsf{1}+\mathsf{10.88}\mathsf{\exp}\left(-\mathsf{0.001736}\mathit{\mathsf{R}}\right)}\times {\mathsf{1}\mathsf{0}}^{-\mathsf{3}} $$
(1)
$$ {\displaystyle \begin{array}{c}{\mathsf{KBDI}}_{\mathit{\mathsf{t}}}={\mathsf{KBDI}}_{\mathit{\mathsf{t}}-\mathsf{1}}\kern0.5em \mathit{\mathsf{if}}\;{\mathit{\mathsf{P}}}_{\mathit{\mathsf{t}}}=\mathsf{0}\;\mathsf{cm}\kern0.36em \mathsf{and}\kern0.24em {\mathsf{TMAX}}_{\mathit{\mathsf{t}}}\le {\mathsf{6.78}}^{{}^{\circ}}\mathit{\mathsf{C}}\\ {}{\mathsf{KBDI}}_{\mathit{\mathsf{t}}}={\mathsf{KBDI}}_{\mathit{\mathsf{t}}-\mathsf{1}}+{\mathsf{DF}}_{\mathit{\mathsf{t}}}\kern0.5em \mathit{\mathsf{if}}\;{\mathit{\mathsf{P}}}_{\mathit{\mathsf{t}}}=\mathsf{0}\;\mathsf{cm}\;\mathsf{and}\;{\mathsf{TMAX}}_{\mathit{\mathsf{t}}}>{\mathsf{6.78}}^{{}^{\circ}}\mathit{\mathsf{C}}\\ {}\begin{array}{c}\begin{array}{cc}{\mathsf{KBDI}}_{\mathit{\mathsf{t}}}={\mathsf{KBDI}}_{\mathit{\mathsf{t}}-\mathsf{1}}+{\mathit{\mathsf{DF}}}_{\mathit{\mathsf{t}}}& \mathit{\mathsf{if}}\;{\mathit{\mathsf{P}}}_{\mathit{\mathsf{t}}}>\mathsf{0}\;\mathsf{cm}\;\mathsf{and}\sum {\mathit{\mathsf{P}}}_{\mathit{\mathsf{t}}}\le \mathsf{0.51}\mathsf{cm}\end{array}\\ {}\begin{array}{c}\begin{array}{cc}{\mathsf{KBDI}}_{\mathit{\mathsf{t}}}={\mathsf{KBDI}}_{\mathit{\mathsf{t}}}^{\prime }+{\mathsf{DF}}_{\mathit{\mathsf{t}}}& \mathit{\mathsf{if}}\;{\mathit{\mathsf{P}}}_{\mathit{\mathsf{t}}}>\mathsf{0}\;\mathsf{cm}\;\mathsf{and}\sum {\mathit{\mathsf{P}}}_{\mathit{\mathsf{t}}}>\mathsf{0}.\mathsf{51}\;\mathsf{cm}\end{array}\\ {}{\mathsf{KBDI}}_{\mathit{\mathsf{t}}}^{\prime }={\mathsf{KBDI}}_{\mathit{\mathsf{t}}-\mathsf{1}}-\mathsf{39.37}\sum {\mathit{\mathsf{P}}}_{\mathit{\mathsf{t}}}\end{array}\end{array}\end{array}} $$
(2)

where DF is drought factor on a given day in the metric system (Janis et al. 2002), TMAX t is the daily maximum temperature (° C), R is the average annual rainfall in each region (cm), and KBDI t − 1 is the Keetch-Byram drought index for time t-1 (the day before) and P t is the daily precipitation (mm) (Janis et al. 2002). The initialization of the KBDI is crucial; it traditionally begins when a few consecutive days of rain occur and soil saturation is reached, but it should be noted that field capacity (ability to absorb water) of arable land varies according to soil and vegetation changes.

The drought increment on a given day, called the drought factor, is determined by (1) the mean annual rainfall for the study location, (2) the drought index of yesterday, and (3) the maximum temperature for today. Reduction in drought occurs only whenever the 24-h rainfall exceeds 0.20 in. (Keetch and Byram 1968). This index is a continuous reference scale to evaluate the dryness of the soil. The KBDI assumes that soil should be at field capacity through first 20 cm of soil depth. In order to increase the accuracy of the KBDI values, the application we developed allows the user to select different soil types. Soil saturation varies by geographic region but may be reached during lengthy precipitation events (Janis et al. 2002). For different soil types, the required depth of soil to hold 8 in. of moisture varies (for example, loam = 30% and clay = 25%). Though Keetch and Byram (1968) suggested that 150–200 mm of precipitation in a week is prolonged sufficient for initialization, this value does not work in semiarid regions. In this study region, total amount of precipitation for a year is about 250 mm distributed across 6 months. Therefore, we had to modify the initialization of KBDI in our region. So, the amount of precipitation to initialize the KBDI was defined as the amount of water needed to increase soil moisture up to field capacity to a depth of 20 cm.

Software description and use

Once downloaded, the application developed here for KBDI in installed by using InstallShield to guide the user through the install. It is free for users of all Visual Studio editions except the Express editions. Input files must follow 3-column format: Year string, maximum temperature, and precipitation values. For missing data, a zero will work, but not a missing data flag or − 9999. More details on preparation of input data files are available in the help file of the application. The application consists of a home screen with a main menu containing all the tabs related to the calculations. In the field capacity option, the user can select one of the numbers depending on soil type and moisture of the study area. The application is developed for agricultural study, particularly cereals. The depth of soil in which major part of root penetrates and absorbs water and nutrient, is assumed 20 cm. In the application (Field Capacity Option), users can select soil type, so the amount of precipitation to start KBDI will be determined. In the output file, KBDI for the selected period shows the daily format of data output. This application allows the user to save files into excel format at every stage, and can plot, graph or map all output data. The Help tab contains a video file demonstrating all analysis steps and explaining all tabs and icons for the user.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salehnia, N., Zare, H., Kolsoumi, S. et al. Predictive value of Keetch-Byram Drought Index for cereal yields in a semi-arid environment. Theor Appl Climatol 134, 1005–1014 (2018). https://doi.org/10.1007/s00704-017-2315-2

Download citation