Skip to main content
Log in

Comparison of sum-of-hourly and daily time step standardized ASCE Penman-Monteith reference evapotranspiration

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The objective of this study was to quantify differences associated with using 24-h time step reference evapotranspiration (ETo), as compared with the sum of hourly ETo computations with the standardized ASCE Penman-Monteith (ASCE-PM) model for semi-arid dry conditions at Fanaye and Ndiaye (Senegal) and semiarid humid conditions at Sapu (The Gambia) and Kankan (Guinea). The results showed that there was good agreement between the sum of hourly ETo and daily time step ETo at all four locations. The daily time step overestimated the daily ETo relative to the sum of hourly ETo by 1.3 to 8% for the whole study periods. However, there is location and monthly dependence of the magnitude of ETo values and the ratio of the ETo values estimated by both methods. Sum of hourly ETo tends to give higher ETo during winter time at Fanaye and Sapu, while the daily ETo was higher from March to November at the same weather stations. At Ndiaye and Kankan, daily time step estimates of ETo were high during the year. The simple linear regression slopes between the sum of 24-h ETo and the daily time step ETo at all weather stations varied from 1.02 to 1.08 with high coefficient of determination (R 2 ≥ 0.87). Application of the hourly ETo estimation method might help on accurate ETo estimation to meet irrigation requirement under precision agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahooghalandari M, Khiadani M, Jahromi WE (2016) Calibration of Valiantzas’ reference evapotranspiration equations for the Pilbara region. Western Australia Theor Appl Climatol. https://doi.org/10.1007/s00704-016-1744-7

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56, FAO, Rome

    Google Scholar 

  • Allen RG, Walter IA, Elliott R, Mecham B, Jensen ME, Itenfisu D, Howell TA., Snyder R, Brown P, Eching S, Spofford T, Hattendorf M, Cuenca RH, Wright JL, Martin D (2000) Issues, requirements and challenges in selecting and specifying a standardized ET equation. Proc., 4th National Irrig. Symp., ASAE, Phoenix

  • Allen RG, Pruitt WO, Wright JL, Howell TA, Ventura F, Snyder R, Itenfisu D, Steduto P, Berengena J, Yrisarry JB, Smith M, Pereira LS, Raes D, Perrier A, Alves A, Walter I, Elliot R (2006) A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric Water Manag 81(1–2):1–22

    Article  Google Scholar 

  • Almorox J, Grieser J (2016) Calibration of the Hargreaves-Samani method for the calculation of reference evapotranspiration in different Köppen climate classes. Hydrol Res. https://doi.org/10.2166/nh.2015.091 in press

  • Arellano G, Irmak S (2015) Reference (potential) evapotranspiration. i: comparison of temperature, radiation, and combination-based energy balance equations in humid, subhumid, arid, semiarid, and mediterranean-type climates. J Irrig Drain Eng. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000978 04015065

    Article  Google Scholar 

  • ASCE-EWRI (2004) The ASCE standardized reference evapotranspiration equation. Standardization of Reference Evapotranspiration Task Committee Final Report. Reston, Va.: ASCE Environmental and Water Resources Institute

  • ASCE-EWRI (2005) The ASCE standardized reference evapotranspiration equation. In: Allen RG, Walter IA, Elliot RL, et al (eds) Environmental and Water Resources Institute (EWRI) of the American Society of Civil. Engineers, ASCE, Standardization of Reference Evapotranspiration Task Committee Final Report. American Society of Civil Engineers (ASCE), Reston, 213pp

  • Azhar AH, Perera BJC (2011) Evaluation of reference evapotranspiration estimation methods under southeast Australian conditions. J Irrig Drain Eng 137(5):268–279

    Article  Google Scholar 

  • Bakhtiari B, Khalili A, Liaghat AAM, Khanjani J (2009) Comparison of daily with sum-of-hourly reference evapotranspiration in Kerman reference weather station. J Water Soil (Agric Sci Technol) 23(1):45–56

    Google Scholar 

  • Blaney HF, Criddle WD (1962) Determining consumptive use and irrigation water requirements. USDA Technical Bulletin 1275, US Department of Agriculture, Beltsville

  • Bodner G, Loiskand W, Kaulm H (2007) Cover crop evapotranspiration under semi-arid conditions using FAO dual crop coefficient method with water stress compensation. Agric Water Manage 93(3):85–98

    Article  Google Scholar 

  • Caird MA, Richards JH, Donovan LA (2007) Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiol 143(4):4–10

    Google Scholar 

  • Djaman K, Irmak S (2013) Actual crop evapotranspiration and alfalfa- and grass-reference crop coefficients of maize under full and limited irrigation and rainfed conditions. J Irrig Drain Eng ASCE 139(6):433–446

    Article  Google Scholar 

  • Djaman K, Balde AB, Sow A, Muller B, Irmak S, Ndiaye MK, Manneh B, Moukoumbi YD, Futakuchi K, Saito K (2015) Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. J Hydrol: Reg Stud 3:139–159

    Google Scholar 

  • Djaman K, Irmak S, Kabenge I, Futakuchi K (2016) Evaluation of the FAO-56 Penman-Monteith model with limited data and the Valiantzas models for estimating reference evapotranspiration in the Sahelian conditions. J Irrig Drain Eng. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001070

    Article  Google Scholar 

  • Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. FAO Irrigation and Drainag. Paper, 24. FAO, Rome

    Google Scholar 

  • Droogers P, Allen RG (2002) Estimating reference evapotranspiration under inaccurate data conditions. Irrig Drain Syst 16(1):33–45

    Article  Google Scholar 

  • Fisher D, Pringle H III (2013) Evaluation of alternative methods for estimating reference evapotranspiration. Agric Sci 4:51–60

    Google Scholar 

  • Gao X, Shizhang P, Junzeng X, Shihong Y, Weiguang W (2015) Arch Agron Soil Sci 61(3):415–426. Proper methods and its calibration for estimating reference evapotranspiration using limited climatic data in Southwestern China

    Article  Google Scholar 

  • Garcia M, Raes D, Allen R, Herbas C (2004) Dynamics of reference evapotranspiration in the Bolivian highlands (Altiplano). Agric Forest Meteorol 125:67–82

    Article  Google Scholar 

  • Gavilán P, Estévez J, Berengena J (2008) Comparison of standardized reference evapotranspiration equations in southern Spain. J Irrig Drain Eng 134(1):1-12

    Article  Google Scholar 

  • Gebler S, Hendricks Franssen HJ, Pütz T, Post H, Schmidt M, Vereecken H (2015) Actual evapotranspiration and precipitation measured by lysimeters: a comparison with eddy covariance and tipping bucket. Hydrol Earth Syst Sci 19:2145–2161

    Article  Google Scholar 

  • Hargreaves GH, Allen RG (2003) History and evaluation of Hargreaves evapotranspiration equation. J Irrig Drain Eng ASCE 129(1):53–63

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99

    Article  Google Scholar 

  • Irmak S (2011) Dynamics of nocturnal, daytime, and sum-of-hourly evapotranspiration and other surface energy fluxes over nonstressed maize canopy. J Irrig Drain Eng. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000360

    Article  Google Scholar 

  • Irmak S, Irmak A, Jones JW (2003) Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. J Irrig Drain Eng ASCE 129(5):336–347

    Article  Google Scholar 

  • Irmak S, Howell TA, Payero JO, Martin DL (2005) Standardized ASCE-Penman-Monteith: impact of sum-of-hourly vs. 24-hr-time step computations at reference weather station sites. Trans ASAE 48(3):1063–1077

    Article  Google Scholar 

  • Irmak S, Irmak A, Howell TA, Martin DL, Payero JO, Copeland KS (2008) Variability analyses of alfalfa-reference to grass-reference evapotranspiration ratios in growing and dormant seasons. J Irrig Drain Eng ASCE 134(2):147–159

    Article  Google Scholar 

  • Irmak S, Odhiambo LO, Mutiibwa D (2011) Assessing the impact of daily net radiation models on grass and alfalfa-reference evapotranspiration estimated using Penman-Monteith equation in a sub-humid and arid climate. J Irrig Drain Engin 137(2):59–72

    Article  Google Scholar 

  • Irmak S, Odhiambo LO, Specht JE, Djaman K (2013) Hourly and daily single and basal evapotranspiration crop coefficients as a function of growing degree days, days after emergence, leaf area index, fractional green canopy cover, and plant phenology for soybean. Trans ASABE 56(5):1785–1803

    Google Scholar 

  • Itenfisu D, Elliot RL, Allen RG, Walter IA (2003) Comparison of reference evapotranspiration calculations as part of the ASCE standardization effort. J Irrig Drain Eng 129(6):440–448

    Article  Google Scholar 

  • Jabloun M, Sahli A (2008) Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data application to Tunisia. Agrc Water Manage 95:707–715

    Article  Google Scholar 

  • Jarvis PG, Mansfield TA (1981) Stomatal physiology. Cambridge University Press, Cambridge, p 295

    Google Scholar 

  • Jia X, Steele D, Hopkins D (2008) Hourly reference evapotranspiration estimates for alfalfa in North Dakota. World Environ Water Resour Congr 2008:1–10. https://doi.org/10.1061/40976(316)89

    Article  Google Scholar 

  • Kisi O (2014) Closure to “Comparison of different empirical methods for estimating daily reference evapotranspiration in Mediterranean climate” by Ozgur Kisi. J Irrig Drain Eng. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000817 07014045

    Article  Google Scholar 

  • Koedyk LP, Kingston DG (2016) Potential evapotranspiration method influence on climate change impacts on river flow: a mid-latitude case study. Hydrol Res, in press. https://doi.org/10.2166/nh.2016.152

    Article  Google Scholar 

  • Liou YA, Kar SK (2014) Evapotranspiration estimation with remote sensing and various surface energy balance algorithms. A Review. Energies 7:2821–2849

    Article  Google Scholar 

  • López-Urrea R, Martín de Santa Olalla F, Fabeiro C, Moratalla A (2006) Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agric Water Manag 85:15–26

    Article  Google Scholar 

  • Martinez CJ, Thepadia M (2010) Estimating reference evapotranspiration with minimum data in Florida. USA J Irrig Drain Eng 136(7):494–501

    Article  Google Scholar 

  • Mendonça JC, Sousa EF, de Bernardo S, Dias GP, Grippa S (2003) Comparison of estimation methods of reference crop evapotranspiration (ETo) for Northeren Region of Rio de Janeiro State, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental 7:275–279

    Article  Google Scholar 

  • Mutiibwa D, Irmak S (2010) On the scaling up soybean leaf level stomatal resistance to canopy resistance for one-step estimation of actual evapotranspiration. Trans ASABE 54(1):141–154

    Article  Google Scholar 

  • Ngongondo C, Xu CY, Tallaksen LM, Alemaw B (2013) Evaluation of the FAO Penman-Montheith, Priestly-Taylor and Hargreaves models for estimating reference evapotranspiration in southern Malawi. Hydrol Res 44(4):706–722

    Article  Google Scholar 

  • Perera K, Western A, Nawarathna B, George B (2015) Comparison of hourly and daily reference crop evapotranspiration equations across seasons and climate zones in Australia. Agric Water Manage 148:84-96

    Article  Google Scholar 

  • Sentelhas PC, Gillespie TJ, Santos EA (2010) Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agric Water Manag 97:635–644

    Article  Google Scholar 

  • Singh VP, Xu CY (1997) Evaluation and generalization of 13 mass-transfer equations for determining free water evaporation. Hydrol Process 11:311–323

    Article  Google Scholar 

  • Snyder RL (1992) Equation for evaporation pan to evapotranspiration conversions. J Irrig Drain Eng 118:977–980

    Article  Google Scholar 

  • Snyder RL, Eching S (2006) PMhr Penman-Monteith Hourly ETref for short and tall canopies. University of California, Davis

    Google Scholar 

  • Snyder KA, Richards JH, Donovan LA (2003) Nighttime conductance in C3 and C4 species: do plants lose water at night? J Exp Bot 54(383):861–865

    Article  Google Scholar 

  • Suleiman AA, Hoogenboom G (2009) A comparison of ASCE and FAO-56 reference evapotranspiration for a 15-min time step in humid climate conditions. J Hydrol 375:326–333. https://doi.org/10.1016/j.jhydrol.2009.06.020

    Article  Google Scholar 

  • Tabari H, Grismer M, Trajkovic S (2011) Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig Sci 31(2):107–117

    Article  Google Scholar 

  • Tabari H, Grismer ME, Trajkovic S (2013) Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrig Sci 31:107–117

    Article  Google Scholar 

  • Thornthwaite CW (1948) An approach towards a rational classification of climate. Geogr Rev 38(1):55-94

    Article  Google Scholar 

  • Tolk JA, Howell TA, Evett SR (2006) Nighttime evapotranspiration from alfalfa and cotton in a semiarid climate. Agron J 98(3):730–736

    Article  Google Scholar 

  • Trajkovic S, Kolakovic S (2009) Evaluation of reference evapotranspiration equations under humid conditions. Water Resour Manage 23:3057–3067

    Article  Google Scholar 

  • Utset A, Farre I, Martinez-Cob A, Cavero J (2004) Comparing Penman-Monteith and Priestley-Taylor approaches as reference evapotranspiration inputs for modeling maize water use under Mediterranean conditions. Agric Water Manag 66:205–219

    Article  Google Scholar 

  • Valiantzas JD (2013a) Simplified forms for the standardized FAO-56 Penman-Monteith reference evapotranspiration using limited data. J Hydrol 505:13–23

    Article  Google Scholar 

  • Valiantzas JD (2013b) Simplified reference evapotranspiration formula using an empirical impact factor for penman’s aerodynamic term. J Irrig Drain Eng 18(1):108–114

    Google Scholar 

  • Valiantzas JD (2013c) Simple ETo forms of Penman’s equation without wind and/or humidity data I theoretical development. J Irrig Drain Eng 139(1):1–8

    Article  Google Scholar 

  • Valiantzas JD (2013d) Simple ETo forms of penman’s equation without wind and/or humidity data II: comparisons with reduced set-FAO and other methodologies. J Irrig Drain Eng 139(1):9–19

    Article  Google Scholar 

  • Valipour M (2014) Investigation of Valiantzas’ evapotranspiration equation in Iran. Theor Appl Climatol 121:1–2. https://doi.org/10.1007/s00704-014-1240-x

    Article  Google Scholar 

  • Valipour M (2015) Importance of solar radiation, temperature, relative humidity, and wind speed for calculation of reference. Arch Agron Soil Sci 6:239–255

    Article  Google Scholar 

  • Van Bavel CHM (1966) Potential evaporation: the combination concept and its experimental verification. Water Resour Res 2(3):455–467

    Article  Google Scholar 

  • Vaughan DA, Balazs E, Heslop-Harrison JS (2007) From crop domestication to super-domestication. Ann Bot (Lond) 100:893–901

    Article  Google Scholar 

  • Ventura F, Spano D, Duce P, Snyder RL (1999) An evaluation of common evapotranspiration equations. Irrig Sci 18(4):163–170

    Article  Google Scholar 

  • Villa Nova NA, Miranda JH, Pereira AB, Oliveira K (2006) Estimation of the potential evapotranspiration by a simplified Penman method. Eng Agric 26:713–721

    Google Scholar 

  • Watson I, Burnett AD (1995) Hydrology: an environmental approach. CRC Press, Boca Raton

    Google Scholar 

  • Xing Z, Chow L, Meng F, Rees HW, Monteith J, Lionel S (2008) Testing reference evapotranspiration estimation methods using evaporation pan and modeling in maritime region of Canada. J Irrig Drain Eng 134(4):417–424

    Article  Google Scholar 

  • Xu CY, Singh VP (2000) Evaluation and generalisation of radiation-based equations for calculating evaporation. Hydrol Process 14:339–349

    Article  Google Scholar 

  • Xu CY, Singh VP (2001) Evaluation and generalisation of temperature-based equations for calculating evaporation. Hydrol Process 15:305–319

    Article  Google Scholar 

  • Xystrakis F, Matzarakis A (2011) Evaluation of 13 empirical reference potential evapotranspiration equations on the island of Crete in southern Greece. J Irrig Drain Eng 137(4):211–222

    Article  Google Scholar 

  • Yildirim E, Cakmak B, Kose T (2004) Comparison of hourly and daily reference evapotranspiration values for GAP project area. J Appl Sci 4(1):53–57

    Article  Google Scholar 

  • Yoder RE, Odhiambo LO, Wright WC (2005) Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the humid southeast United States. Appl Eng Agric 21:197–202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koffi Djaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djaman, K., Irmak, S., Sall, M. et al. Comparison of sum-of-hourly and daily time step standardized ASCE Penman-Monteith reference evapotranspiration. Theor Appl Climatol 134, 533–543 (2018). https://doi.org/10.1007/s00704-017-2291-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2291-6

Navigation