Skip to main content

Comparison of extreme precipitation characteristics between the Ore Mountains and the Vosges Mountains (Europe)

Abstract

Understanding the characteristics of extreme precipitation events (EPEs) not only helps in mitigating the hazards associated with it but will also reduce the risks by improved planning based on the detailed information, and provide basis for better engineering decisions which can withstand the recurring and likely more frequent events predicted in future in the context of global climate change. In this study, extremity, temporal and spatial characteristics, and synoptic situation of the 54 EPEs that occurred during 1960–2013 were compared between two low mountain ranges situated in Central Europe: the Ore Mountains (OM) and Vosges Mountains (VG). The EPEs were defined using the Weather Extremity Index, which quantifies the extremity, duration, and spatial extent of events. Comparative analysis of EPE characteristics showed that in both regions the EPEs were mostly short (lasted 1–2 days) and their seasonal occurrence significantly depended on the synoptic situation and duration of EPEs; the low was related to summer short EPEs, while zonal circulation to winter long EPEs. The EPEs were generally related to lows in OM and to troughs in VG. The lows often moved to OM from the Mediterranean area, i.e. along the Vb track. However, five EPEs in VG occurred during a low with Vb track significantly deflected westwards. The EPEs in VG affected smaller area as compared to that in OM. The comparison of EPEs between the two low mountain ranges is first of its kind and contributes to the understanding of EPE characteristics in the regions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Alexander LV, Zhang X, Peterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmospheres 111:D05109. doi:10.1029/2005JD006290

  • Alsatia (1932) L’Alsace: précis de la géographie régionale des départements Haut-Rhin et Bas-Rhin. Alsatia, Colmar

  • Awan NK, Formayer H (2016) Cutoff low systems and their relevance to large-scale extreme precipitation in the European Alps. Theor Appl Climatol:1–10. doi:10.1007/s00704-016-1767-0

  • Barry RG (2008) Mountain weather and climate third edition, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bartholy J, Pongracz R (2005) Tendencies of extreme climate indices based on daily precipitation in the Carpathian Basin for the 20th century. Idojárás 109:1–20

    Google Scholar 

  • Bartholy J, Pongrácz R (2007) Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Glob Planet Change 57:83–95. doi:10.1016/j.gloplacha.2006.11.002

    Article  Google Scholar 

  • Baulig H (1950) Les inondations de décembre 1947

  • Beniston M, Stephenson DB (2004) Extreme climatic events and their evolution under changing climatic conditions. Glob Planet Change 44:1–9. doi:10.1016/j.gloplacha.2004.06.001

    Article  Google Scholar 

  • Bernhofer C, Surke M (2009) Das Klima in der REGKLAM-Modellregion Dresden. Leibniz-Institut für Ökologische Raumentwicklung (eds). Rhombos-Verl, Berlin

  • Bosshard T, Kotlarski S, Zappa M, Schär C (2013) Hydrological climate-impact projections for the Rhine River: GCM–RCM uncertainty and separate temperature and precipitation effects. J Hydrometeorol 15:697–713. doi:10.1175/JHM-D-12-098.1

    Article  Google Scholar 

  • Boucek J (2007) August 2002 catastrophic flood in the Czech Republic. In: Vasiliev OF, VanGelder P, Plate EJ, Bolgov MV (eds) Extreme hydrological events: new concepts for security. Springer, Dordrecht, pp 59–68

    Chapter  Google Scholar 

  • Brádka J (1963) O srážkovém stínu za Krušnými horami. Meteorol Zprávy 16:26–28

    Google Scholar 

  • Brázdil R (2002) Meteorologické extrémy a povodně v České republice - přirozený trend nebo následek globálního oteplování?

  • Brázdil R, Dobrovolný P, Elleder L, et al (2005) Historické a současné povodně v České republice. Masarykova univerzita v Brně, Český hydrometeorologický ústav v Praze

  • Brazdil R, Kotyza O, Dobrovolny P (2006) July 1432 and August 2002—two millennial floods in Bohemia? Hydrol Sci J-J Sci Hydrol 51:848–863. doi:10.1623/hysj.51.5.848

    Article  Google Scholar 

  • Chamas V, Kakos V (1988) Mimořádná průtrž mračen a povodeň na Jílovském potoce dne 1. 7. 1987. Sborník Českoslov Geogr Spol 93:265–278

    Google Scholar 

  • Conradt T, Roers M, Schröter K et al (2013) Comparison of the extreme floods of 2002 and 2013 in the German part of the Elbe River basin and their runoff simulation by SWIM-live. Hydrol Wasserbewirtsch 57:241–245. doi:10.5675/HyWa-2013,5-4

    Google Scholar 

  • Cramér H (1946) Mathematical methods of statistics. Princeton University Press, Princeton

    Google Scholar 

  • DWD DDR, HMÚ ČSSR (1975) Podnebí a počasí v Krušných horách. SNTL - Nakladatelství technické literatury, Praha

    Google Scholar 

  • Ernst F (1988) Panorama de la géographie physique de l’Alsace; et Les régions naturelles de l’Alsace

  • Fink A, Ulbrich U, Engel H (1996) Aspects of the January 1995 flood in Germany. Weather 51:34–39. doi:10.1002/j.1477-8696.1996.tb06182.x

    Article  Google Scholar 

  • Foresti L, Pozdnoukhov A (2012) Exploration of alpine orographic precipitation patterns with radar image processing and clustering techniques. Meteorol Appl 19:407–419. doi:10.1002/met.272

    Article  Google Scholar 

  • Franke J, Goldberg V, Eichelmann U et al (2004) Statistical analysis of regional climate trends in Saxony, Germany. Clim Res 27:145–150. doi:10.3354/cr027145

    Article  Google Scholar 

  • Gley G (1867) Géographie physique, industrielle, administrative et historique des Vosges, 3rd edn. V.e Gley Impr. V.e & Durand Libraire, Épinal

    Google Scholar 

  • Grams CM, Binder H, Pfahl S et al (2014) Atmospheric processes triggering the central European floods in June 2013. Nat Hazards Earth Syst Sci 14:1691–1702. doi:10.5194/nhess-14-1691-2014

    Article  Google Scholar 

  • Greenwood PE, Nikulin MS (1996) A guide to chi-squared testing. Wiley, New York

    Google Scholar 

  • Hänsel S, Schucknecht A, Böttcher F, et al (2015) Niederschlagsveränderungen in Sachsen von 1901 bis 2100 Starkniederschlags- und Trockenheitstrends. Selbstverlag des Deutchen Wetterdienstes, Offenbach am Main

  • Heidenreich M, Bernhofer C (eds) (2011) Klimaprojektionen für die REGKLAM-Modellregion Dresden. Rhombos Verl, Berlin

    Google Scholar 

  • Hirsch F (1972) Bassin représentatif de la Bruche: Intensité des pluies dans le bassin, une méthode d’analyse. Société Météorologique Fr 443–456

  • Hladný J, Barbořík J (1967) Studie krátkodobých hydrologických předpovědí v povodí Ohře. Sborník HMÚ 1:1–38

    Google Scholar 

  • Hofstätter M, Chimani B, Lexer A, Blöschl G (2016) A new classification scheme of European cyclone tracks with relevance to precipitation. Water Resour Res n/a-n/a doi: 10.1002/2016WR019146

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press

  • Houze RA (2014) Cloud dynamics. Academic Press

  • Hoy A, Jaagus J, Sepp M, Matschullat J (2012a) Spatial response of two European atmospheric circulation classifications (data 1901–2010). Theor Appl Climatol 112:73–88. doi:10.1007/s00704-012-0707-x

    Article  Google Scholar 

  • Hoy A, Sepp M, Matschullat J (2012b) Atmospheric circulation variability in Europe and northern Asia (1901 to 2010). Theor Appl Climatol 113:105–126. doi:10.1007/s00704-012-0770-3

    Article  Google Scholar 

  • INTERKLIM (2014) Der Klimawandel im böhmisch-sächsischen Grenzraum. Změna klimatu v česko-saském pohraničí. Sächsisches Landesamt für Umwelt, Dresden

    Google Scholar 

  • Kakos V (1975) Meteorologické příčiny povodní v první polovině prosince 1974

  • Kakos V (1977) Meteorologické příčiny povodní v oblasti Krušných hor

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Kašpar M, Müller M (2014) Combinations of large-scale circulation anomalies conducive to precipitation extremes in the Czech Republic. Atmospheric Res 138:205–212. doi:10.1016/j.atmosres.2013.11.014

    Article  Google Scholar 

  • Kienzler S, Pech I, Kreibich H et al (2015) After the extreme flood in 2002: changes in preparedness, response and recovery of flood-affected residents in Germany between 2005 and 2011. Nat Hazards Earth Syst Sci 15:505–526. doi:10.5194/nhess-15-505-2015

    Article  Google Scholar 

  • Küchler W, Sommer W (2005) Klimawandel in Sachsen: Sachstand und Ausblick. Sächsisches Staatsministerium für Umwelt und Landwirtschaft, Dresden

    Google Scholar 

  • Kynčil J (1983) Povodně v Krušných horách a jejich podhůří v letech 1784-1981: Příspěvek k dějinám čes. hydrologie. Povodí Ohře, podnik pro provoz a využití vodních toků

  • Kynčil J, Lůžek B (1979) Historické povodně v povodí Bíliny a Ohře. Povodí Ohře

  • Kyselý J (2009) Trends in heavy precipitation in the Czech Republic over 1961–2005. Int J Climatol 29:1745–1758. doi:10.1002/joc.1784

    Article  Google Scholar 

  • Kyselý J, Picek J (2007) Regional growth curves and improved design value estimates of extreme precipitation events in the Czech Republic. Clim Res 33:243–255. doi:10.3354/cr033243

    Article  Google Scholar 

  • Labbouz L, Van Baelen J, Tridon F et al (2013) Precipitation on the lee side of the Vosges Mountains: multi-instrumental study of one case from the COPS campaign. Meteorol Z 22:413–432. doi:10.1127/0941-2948/2013/0413

    Article  Google Scholar 

  • Maire G (1979) Analyse des fortes pluies de 1h à 48h: Bassin de l’Ill, région Alsace. Ministère de l’agriculture, Université Louis Pasteur, Strasbourg

    Google Scholar 

  • Merz B, Elmer F, Kunz M et al (2014) The extreme flood in June 2013 in Germany. Houille Blanche:5–10. doi:10.1051/lhb/2014001

  • Météo-France (2008) Climatologie des Vosges. Météo-France au service des Vosges: le centre dépertemental d’Épinal, Épinal

  • Minářová J, Müller M, Clappier A, et al (2017b) Duration, rarity, affected area, and weather types associated with extreme precipitation in the Ore Mountains (Erzgebirge) region, Central Europe Press: doi:10.1002/joc.5100

  • Minářová J, Müller M, Clappier A (2017c) Seasonality of mean and heavy precipitation in the area of the Vosges Mountains: dependence on the selection criterion. Int J Climatol 37:2654–2666. doi:10.1002/joc.4871

    Article  Google Scholar 

  • Minářová J, Müller M, Clappier A (2017d) Seasonality of mean and heavy precipitation in the area of the Vosges Mountains: dependence on the selection criterion. Int J Climatol 37:2654–2666. doi:10.1002/joc.4871

    Article  Google Scholar 

  • Minářová J, Müller M, Clappier A, Kašpar M (2017a) Characteristics of extreme precipitation in the Vosges Mountains region (north-eastern France). Presstime doi: 10.1002/joc.5102

  • Müller M, Kaspar M (2014) Event-adjusted evaluation of weather and climate extremes. Nat Hazards Earth Syst Sci 14:473–483. doi:10.5194/nhess-14-473-2014

    Article  Google Scholar 

  • Müller M, Kašpar M (2010) Quantitative aspect in circulation type classifications—an example based on evaluation of moisture flux anomalies. Phys Chem Earth Parts ABC 35:484–490. doi:10.1016/j.pce.2009.09.004

    Article  Google Scholar 

  • Müller M, Kašpar M, Řezáčová D, Sokol Z (2009) Extremeness of meteorological variables as an indicator of extreme precipitation events. Atmospheric Res 92:308–317. doi:10.1016/j.atmosres.2009.01.010

    Article  Google Scholar 

  • Munzar J, Auer I, Ondráček S (2011) Central European one-day precipitation record. Moravian Geographical Reports 64:107–112

    Google Scholar 

  • Oliver JE (2008) Encyclopedia of world climatology. Springer Science & Business Media

  • Pachauri RK, Allen MR, Barros VR et al (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

    Google Scholar 

  • Parlow E (1996) The regional climate project REKLIP—an overview. Theor Appl Climatol 53:3–7. doi:10.1007/BF00866406

    Article  Google Scholar 

  • Paul P, Roussel I (1985) Les précipitations exceptionnelles d’avril et mai 1983 à l’origine des fortes crues en Alsace et en Lorraine

  • Pechala F, Böhme W (eds) (1975) Podnebí a počasí v Krušných horách, 1. vyd. SNTL, Praha

  • Pelt SC van, Beersma JJ, Buishand TA et al (2014) Uncertainty in the future change of extreme precipitation over the Rhine basin: the role of internal climate variability. Clim Dyn 44:1789–1800. doi:10.1007/s00382-014-2312-4

  • Planche C, Wobrock W, Flossmann AI et al (2013) Small scale topography influence on the formation of three convective systems observed during COPS over the Vosges Mountains. Meteorol Z 22:395–411. doi:10.1127/0941-2948/2013/0402

    Article  Google Scholar 

  • Prudhomme C, Reed DW (1998) Relationships between extreme daily precipitation and topography in a mountainous region: a case study in Scotland. Int J Climatol 18:1439–1453. doi:10.1002/(SICI)1097-0088(19981115)18:13<1439::AID-JOC320>3.0.CO;2-7

    Article  Google Scholar 

  • REKLIP (1995) Klimaatlas Oberhein Mitte-Süd: REKLIP. Regio-Klima-Projeckt. Vdf Hochschulverl, Zürich

    Google Scholar 

  • Roe GH, Montgomery DR, Hallet B (2003) Orographic precipitation and the relief of mountain ranges. J Geophys Res Solid Earth 108:n/a–n/a. doi: 10.1029/2001JB001521

  • Rudolf B, Rapp J (2002) Das Jahrhunderthochwasser der Elbe: Synoptische Wetterentwicklung und klimatologische Aspekte. DWD Klimastatusbericht 172–187

  • Schiller J (2016) Eine Sensitivitätsanalyse des Weather Extremity Index (WEI) nach Müller und Kaspar zur Beschreibung extremer Niederschläge unter Verwendung radarbasierter Niederschlagsmessungen des Deutschen Wetterdienstes. University of Cologne

  • Schröter K, Kunz M, Elmer F et al (2015) What made the June 2013 flood in Germany an exceptional event? A hydro-meteorological evaluation. Hydrol Earth Syst Sci 19:309–327. doi:10.5194/hess-19-309-2015

    Article  Google Scholar 

  • Sell Y (1998) L’Alsace et les Vosges. Delachaux et Niestlé, Lausanne

    Google Scholar 

  • Šercl P (2008) Hodnocení metod odhadu plošných srážek (Assessment of methods for area precipitation estimates). Meteorol Zprávy Meteorol Bull 61:33–43

    Google Scholar 

  • Smith RB (2006) Progress on the theory of orographic precipitation. Spec Pap 398:1–16

    Google Scholar 

  • SMUL (2008) Sachsen im Klimawandel - Eine Analyse. Sächsisches Staatsministerium für Umwelt und Landwirtschaft, Dresden

    Google Scholar 

  • Socher M, Boehme-Korn G (2008) Central European floods 2002: lessons learned in Saxony. J Flood Risk Manag 1:123–129. doi:10.1111/j.1753-318X.2008.00014.x

    Article  Google Scholar 

  • Söder M, Conrad M, Gönner T, Kusch W (2009) Les changements climatiques en Allemagne du Sud: Ampleur – Conséquences – Stratégies. Klimaveränderung und Konsequenzen für die Wasserwirtschaft (KLIWA), Mainz

  • Solomon S, Quin D, Manning M, et al (2007) Climate change 2007—the physical science basis: Working Group I contribution to the Fourth Assessment Report of the IPCC, IPCC. Cambridge University Press, Cambridge, UK and New York, NY, USA

  • Stein C, Malitz G (2013) Das Hochwasser an Elbe und Donau im Juni 2013

  • Štekl J, Brázdil R, Kakos V et al (2001) Extrémní denní srážkové úhrny na území ČR v období 1879–2000 a jejich synoptické příčiny, 1st edn. Národní klimatický program České republiky, Praha

    Google Scholar 

  • Thieken AH, Kreibich H, Mueller M, Merz B (2007) Coping with floods: preparedness, response and recovery of flood-affected residents in Germany in 2002. Hydrol Sci J-J Sci Hydrol 52:1016–1037. doi:10.1623/hysj.52.5.1016

    Article  Google Scholar 

  • Thieken AH, Muller M, Kreibich H, Merz B (2005) Flood damage and influencing factors: new insights from the August 2002 flood in Germany. Water Resour Res 41:W12430. doi:10.1029/2005WR004177

    Article  Google Scholar 

  • Tolasz R, Brázdil R, Bulíř O, et al (2007) Altas podnebí Česka/Climate atlas of Czechia, 1st edn. Český hydrometeorologický ústav, Universita Palackého

  • Ulbrich U, Brücher T, Fink AH et al (2003) The central European floods of August 2002: part 1—rainfall periods and flood development. Weather 58:371–377. doi:10.1256/wea.61.03A

    Article  Google Scholar 

  • Uppala SM, KÅllberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176

    Article  Google Scholar 

  • van Bebber WJ (1891) Die Zugstrassen der barometrischen Minima nach den Bahnenkarten der deutschen Seewarte für den Zeitraum 1875–1890

  • Van der Schrier, G, van den Besselaar E, Leander R, et al (2013) Central European flooding 2013—Euro4m CIB

  • van Meijgaard E, Jilderda R (1996) The Meuse flood in January 1995. Weather 51:39–45. doi:10.1002/j.1477-8696.1996.tb06183.x

    Article  Google Scholar 

  • Vautard R (2013) Des projections climatiques d’une précision inégalée sur toute l’Europe. http://www.insu.cnrs.fr/node/4634. Accessed 10 Feb 2014

  • Wang XL, Chen H, Wu Y et al (2010) New techniques for the detection and adjustment of shifts in daily precipitation data series. J Appl Meteorol Climatol 49:2416–2436. doi:10.1175/2010JAMC2376.1

    Article  Google Scholar 

  • Wang XL, Feng Y (2013) RHtests_dlyPrcp user manual. Clim Res Div Atmospheric Sci Technol Dir Sci Technol Branch Environ Can Tor Ont Can Retrieved Febr 25:2014

    Google Scholar 

  • Werner PC, Gerstengarbe F-W (2010) PIK Report No. 119—Katalog Der Grosswetterlagen Europas nach Paul Hess und Helmut Brezowsky 7., verbesserte und ergänzte Auflage

  • Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press

  • World Meteorological Organization (2008) Guide to meteorological instruments and methods of observation. World Meteorological Organization, Geneva

    Google Scholar 

  • Zolina O (2014) Multidecadal trends in the duration of wet spells and associated intensity of precipitation as revealed by a very dense observational German network. Environ Res Lett 9:025003. doi:10.1088/1748-9326/9/2/025003

    Article  Google Scholar 

  • Zolina O, Simmer C, Belyaev K et al (2013) Changes in the duration of European wet and dry spells during the last 60 years. J Clim 26:2022–2047. doi:10.1175/JCLI-D-11-00498.1

    Article  Google Scholar 

Download references

Acknowledgements

We thank Météo-France, DWD (Deutscher Wetterdienst), and CHMI (Czech Hydrometeorological Survey) for provided precipitation data, and NCEP/NCAR re-analysed gridded data of synoptic variables. We extend great thanks to the BGF (French Government scholarship) and DBU (Deutsche Bundesstiftung Umwelt), and project CRREAT (reg. number: CZ.02.1.01/0.0/0.0/15_003/0000481) call number 02_15_003 of the Operational Programme Research, Development and Education for financially supporting the research for 15 and 6 months, respectively. We also thank M.Phil. Syed Muntazir Abbas for his valuable remarks during the revision of the manuscript and the language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Minářová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Minářová, J., Müller, M., Clappier, A. et al. Comparison of extreme precipitation characteristics between the Ore Mountains and the Vosges Mountains (Europe). Theor Appl Climatol 133, 1249–1268 (2018). https://doi.org/10.1007/s00704-017-2247-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2247-x