Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran

Abstract

An accurate computational approach for the prediction of pan evaporation over daily time horizons is a useful decisive tool in sustainable agriculture and hydrological applications, particularly in designing the rural water resource systems, water use allocations, utilization and demand assessments, and the management of irrigation systems. In this study, a hybrid predictive model (Multilayer Perceptron-Firefly Algorithm (MLP-FFA)) based on the FFA optimizer that is embedded within the MLP technique is developed and evaluated for its suitability for the prediction of daily pan evaporation. To develop the hybrid MLP-FFA model, the pan evaporation data measured between 2012 and 2014 for two major meteorological stations (Talesh and Manjil) located at Northern Iran are employed to train and test the predictive model. The ability of the hybrid MLP-FFA model is compared with the traditional MLP and support vector machine (SVM) models. The results are evaluated using five performance criteria metrics: root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe efficiency (NS), and the Willmott’s Index (WI). Taylor diagrams are also used to examine the similarity between the observed and predicted pan evaporation data in the test period. Results show that an optimal MLP-FFA model outperforms the MLP and SVM model for both tested stations. For Talesh, a value of WI = 0.926, NS = 0.791, and RMSE = 1.007 mm day−1 is obtained using MLP-FFA model, compared with 0.912, 0.713, and 1.181 mm day−1 (MLP) and 0.916, 0.726, and 1.153 mm day−1 (SVM), whereas for Manjil, a value of WI = 0.976, NS = 0.922, and 1.406 mm day−1 is attained that contrasts 0.972, 0.901, and 1.583 mm day−1 (MLP) and 0.971, 0.893, and 1.646 mm day−1 (SVM). The results demonstrate the importance of the Firefly Algorithm applied to improve the performance of the MLP-FFA model, as verified through its better predictive performance compared to the MLP and SVM model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abudu S, Cui C, King JP et al (2011) Modeling of daily pan evaporation using partial least squares regression. Sci China Technol Sci 54:163–174. doi:10.1007/s11431-010-4205-z

    Article  Google Scholar 

  2. Al-Shammari ET, Mohammadi K, Keivani A et al (2016) Prediction of daily dewpoint temperature using a model combining the support vector machine with firefly algorithm. J Irrig Drain Eng. doi:10.1061/(ASCE)IR.1943-4774.0001015

  3. Bruton JM, McClendon RW, Hoogenboom G (2000) Estimating daily pan evaporation with artificial neural networks. Trans ASAE 43:491–496. doi:10.13031/2013.2730

    Article  Google Scholar 

  4. Cekaite A (2016) A comparative study for estimation of wave height using traditional and hybrid soft-computing methods. Int J Comput Collab Learn 4:319–341. doi:10.1007/s11412-009-9067-7

    Google Scholar 

  5. Ch S, Sohani SK, Kumar D et al (2014) A Support Vector Machine-Firefly Algorithm based forecasting model to determine malaria transmission. Neurocomputing 129:279–288. doi:10.1016/j.neucom.2013.09.030

    Article  Google Scholar 

  6. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?—arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250. doi:10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  7. Deo RC, Şahin M (2015) Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern Australia. Atmos Res 161–162:65–81. doi:10.1016/j.atmosres.2015.03.018

    Article  Google Scholar 

  8. Deo RC, Samui P (2017) Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probability machine regression: case study of Brisbane City. J Hydrol Eng 22:5017003. doi:10.1061/(ASCE)HE.1943-5584.0001506

    Article  Google Scholar 

  9. Deo RC, Samui P, Kim D (2015) Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1153-y

  10. Dogan E, Gumrukcuoglu M, Sandalci M, Opan M (2010) Modelling of evaporation from the reservoir of Yuvacik dam using adaptive neuro-fuzzy inference systems. Eng Appl Artif Intell 23:961–967. doi:10.1016/j.engappai.2010.03.007

    Article  Google Scholar 

  11. Drucker H, Burges CJ, Kaufman L, Smola AJ, Vapnik V (1997) Support vector regression machines. Adv Neural Inf Process Syst 155–161

  12. Fahimi F, Yaseen ZM, El-shafie A (2017) Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theor Appl Climatol 128(3–4):875–903

  13. Ghorbani MA, Khatibi R, Hosseini B, Bilgili M (2013) Relative importance of parameters affecting wind speed prediction using artificial neural networks. Theor Appl Climatol 114:107–114. doi:10.1007/s00704-012-0821-9

    Article  Google Scholar 

  14. Ghorbani MA, Zadeh HA, Isazadeh M, Terzi O (2016) A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environ Earth Sci 75:1–14. doi:10.1007/s12665-015-5096-x

    Article  Google Scholar 

  15. Ghorbani MA, Shamshirband S, Zare Haghi D et al (2017) Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil Tillage Res 172:32–38. doi:10.1016/j.still.2017.04.009

    Article  Google Scholar 

  16. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res Atmos. doi:10.1029/2007JD008972

  17. Gocić M, Motamedi S, Shamshirband S et al (2015) Soft computing approaches for forecasting reference evapotranspiration. Comput Electron Agric 113:164–173. doi:10.1016/j.compag.2015.02.010

    Article  Google Scholar 

  18. Goyal MK, Bharti B, Quilty J et al (2014) Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Syst Appl 41:5267–5276. doi:10.1016/j.eswa.2014.02.047

    Article  Google Scholar 

  19. Günay ME (2016) Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: case of Turkey. Energy Policy 90:92–101. doi:10.1016/j.enpol.2015.12.019

    Article  Google Scholar 

  20. Hassanzadeh T, Faez K, Seyfi G (2012) A speech recognition system based on structure equivalent fuzzy neural network trained by firefly algorithm. In Biomedical Engineering (ICoBE), 2012 International Conference on (pp. 63–67). IEEE, Penang. doi:10.1109/ICoBE.2012.6178956

  21. Heo K-Y, Ha K-J, Yun K-S et al (2013) Methods for uncertainty assessment of climate models and model predictions over East Asia. Int J Climatol. doi:10.1002/joc.3692

  22. Hong W-C (2009) Hybrid evolutionary algorithms in a SVR-based electric load forecasting model. Int J Electr Power Energy Syst 31:409–417. doi:10.1016/j.ijepes.2009.03.020

    Article  Google Scholar 

  23. Hsu C-W, Chang C-C, Lin C-J (2008) A practical guide to support vector classification. BJU Int 101:1396–1400. doi:10.1177/02632760022050997

    Article  Google Scholar 

  24. Inc TM (2015) MATLAB (R2015a). MathWorks Inc.

  25. IPCC (2007) Climate change 2007: the physical science basis. Intergov Panel Clim Chang 446:727–728. doi:10.1038/446727a

    Google Scholar 

  26. Kaushik A, Tayal DK, Yadav K, Kaur A (2016) Integrating firefly algorithm in artificial neural network models for accurate software cost predictions. J Softw Evol Process 28:665–688. doi:10.1002/smr.1792

    Article  Google Scholar 

  27. Kavousi-Fard A, Samet H, Marzbani F (2014) A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst Appl 41:6047–6056. doi:10.1016/j.eswa.2014.03.053

    Article  Google Scholar 

  28. Kayarvizhy N, Kanmani S, Uthariaraj RV (2014) ANN models optimized using swarm intelligence algorithms. WSEAS Trans Comput 13:501–519

    Google Scholar 

  29. Keshtegar B, Piri J, Kisi O (2016) A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Comput Electron Agric 127:120–130. doi:10.1016/j.compag.2016.05.018

    Article  Google Scholar 

  30. Keskin ME, Terzi Ö, Taylan D (2009) Estimating daily pan evaporation using adaptive neural-based fuzzy inference system. Theor Appl Climatol 98:79–87. doi:10.1007/s00704-008-0092-7

    Article  Google Scholar 

  31. Kişi Ö (2006) Daily pan evaporation modelling using a neuro-fuzzy computing technique. J Hydrol 329:636–646. doi:10.1016/j.jhydrol.2006.03.015

    Article  Google Scholar 

  32. Kisi O (2007) Evapotranspiration modelling from climatic data using a neural computing technique. Hydrol Process 21:1925–1934. doi:10.1002/hyp.6403

    Article  Google Scholar 

  33. Kisi O, Genc O, Dinc S, Zounemat-Kermani M (2016) Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree. Comput Electron Agric 122:112–117. doi:10.1016/j.compag.2016.01.026

    Article  Google Scholar 

  34. Lima AR, Cannon AJ, Hsieh WW (2016) Forecasting daily streamflow using online sequential extreme learning machines. J Hydrol 537:431–443. doi:10.1016/j.jhydrol.2016.03.017

    Article  Google Scholar 

  35. Lin HT, Lin CJ (2003) A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Neural Comput 1–32

  36. Lukasik S, Zak S (2009) Firefly algorithm for continuous constrained optimization tasks. Firefly Algorithm Contin Constrained Optim Tasks 5796:97–106. doi:10.1007/978-3-642-04441-0_8

    Google Scholar 

  37. Macfarlane C, Ogden GN (2012) An improved evaporation dome for forest environments. Comput Electron Agric 89:126–129. doi:10.1016/j.compag.2012.09.004

    Article  Google Scholar 

  38. Mba L, Meukam P, Kemajou A (2016) Application of artificial neural network for predicting hourly indoor air temperature and relative humidity in modern building in humid region. Energy Build 121:32–42. doi:10.1016/j.enbuild.2016.03.046

    Article  Google Scholar 

  39. McClelland JL, Rumelhart DE (1988) Explorations in parallel distributed processing: a handbook of models, programs, and exercises. Explor Parallel Distrib Process Handb Model Programs Exerc 344:ix, 344. doi:10.2307/1423065

    Google Scholar 

  40. Misra D, Oommen T, Agarwal A et al (2009) Application and analysis of support vector machine based simulation for runoff and sediment yield. Biosyst Eng 103:527–535. doi:10.1016/j.biosystemseng.2009.04.017

    Article  Google Scholar 

  41. Moghaddamnia A, Ghafari Gousheh M, Piri J et al (2009) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Resour 32:88–97. doi:10.1016/j.advwatres.2008.10.005

    Article  Google Scholar 

  42. Mohanty S, Jha MK, Raul SK et al (2015) Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites. Water Resour Manag 29:5521–5532. doi:10.1007/s11269-015-1132-6

    Article  Google Scholar 

  43. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  44. Soleymani SA, Goudarzi S, Anisi MH et al (2016) A novel method to water level prediction using RBF and FFA. Water Resour Manag:1–19. doi:10.1007/s11269-016-1347-1

  45. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106:7183–7192. doi:10.1029/2000JD900719

    Article  Google Scholar 

  46. Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain Eng 131:316–323. doi:10.1061/(ASCE)0733-9437(2005)131:4(316)

    Article  Google Scholar 

  47. Vapnik V (1995) The nature of statistical learning theory. Springer-Verlag New York, Inc., New York

    Book  Google Scholar 

  48. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82. doi:10.3354/cr030079

    Article  Google Scholar 

  49. Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094. doi:10.1002/joc.2419

    Article  Google Scholar 

  50. Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimization. Int J Bio-inspired Comput 2(2):78–84. doi:10.1504/IJBIC.2010.032124

    Article  Google Scholar 

  51. Yaseen ZM, El-shafie A, Jaafar O et al (2015) Artificial intelligence based models for stream-flow forecasting: 2000–2015. J Hydrol 530:829–844. doi:10.1016/j.jhydrol.2015.10.038

    Article  Google Scholar 

  52. Yaseen ZM, Allawi MF, Yousif AA, Jaafar O, Hamzah FM, El-Shafie A (2016a) Non-tuned machine learning approach for hydrological time series forecasting. Neural Comput & Appl 1–13. doi: 10.1007/s00521-016-2763-0

  53. Yaseen ZM, Jaafar O, Deo RC et al (2016b) Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq. J Hydrol. doi:10.1016/j.jhydrol.2016.09.035

  54. Yoon H, Jun SC, Hyun Y, Bae GO, & Lee KK (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. JHydrol 396(1):128–138

Download references

Acknowledgements

The authors wish to express their gratitude to the Gilan Meteorological Organization (GMO) for providing the data. Also, our appreciation extended to the anonymous reviewers and editor for their constructive and useful comments that helped us to improve the quality of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zaher Mundher Yaseen.

Ethics declarations

Conflict of interest

Regarding the conflict of interest declaration, the authors prefer all the potential reviewers from the authors’ countries are excluded from reviewing the manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, M.A., Deo, R.C., Yaseen, Z.M. et al. Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran. Theor Appl Climatol 133, 1119–1131 (2018). https://doi.org/10.1007/s00704-017-2244-0

Download citation

Keywords

  • Firefly Algorithm
  • Forecasting
  • Hybrid model
  • Multilayer perceptron
  • Pan evaporation
  • Support vector machine