Extreme maximum temperature events and their relationships with large-scale modes: potential hazard on the Iberian Peninsula

Abstract

The aim of this paper is to analyze spatiotemporal distribution of maximum temperatures in the Iberian Peninsula (IP) by using various extreme maximum temperature indices. Thresholds for determining temperature extreme event (TEE) severity are defined using 99th percentiles of daily temperature time series for the period 1948 to 2009. The synoptic-scale fields of such events were analyzed in order to better understand the related atmospheric processes. The results indicate that the regions with a higher risk of maximum temperatures are located in the river valleys of southwest and northeast of the IP, while the Cantabrian coast and mountain ranges are characterized by lower risk. The TEEs were classified, by means of several synoptic fields (sea level pressure, temperature, and geopotential height at 850 and 500 hPa), in four clusters that largely explain their spatiotemporal distribution on the IP. The results of this study show that TEEs mainly occur associated with a ridge elongated from Subtropical areas. The relationships of TEEs with teleconnection patterns, such as the North Atlantic Oscillation (NAO), Western Mediterranean Oscillation (WeMO), and Mediterranean Oscillation (MO), showed that the interannual variability of extreme maximum temperatures is largely controlled by the dominant phase of WeMO in all seasons except wintertime where NAO is prevailing. Results related to MO pattern show less relevance in the maximum temperatures variability. The correct identification of synoptic patterns linked with the most extreme temperature event associated with each cluster will assist the prediction of events that can pose a natural hazard, thereby providing useful information for decision making and warning systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Acero FJ, García JA, Gallego MC, Parey S, Dacunha-Castelle D (2014) Trends in summer extreme temperatures over the Iberian Peninsula using nonurban station data. J Geophys Res 119(1):39–53. doi:10.1002/2013JD020590

    Google Scholar 

  2. Aguadé M, Martín Vide J, Llasat MC (2012) Climatología sinóptica aplicada a la prevención de incendios forestales en Cataluña. Rev Montes, 2° trimestre 109:9–15

    Google Scholar 

  3. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Tank A, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Kumar KR, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. doi:10.1029/2005JD006290

    Google Scholar 

  4. Andrade C, Fraga H, Santos JA (2014) Climate change multi-model projections for temperature extremes in Portugal. Atmos Sci Lett 15:149–156

    Article  Google Scholar 

  5. Ballester J, Douville H, Chauvin F (2009) Present-day climatology and projected changes of warm and cold days in the CNRM-CM3 global climate model. Clim Dyn 32:35–54

    Article  Google Scholar 

  6. Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224

    Article  Google Scholar 

  7. Beniston M, Stephenson DB (2004) Extreme climatic events and their evolution under changing climatic conditions. Glob Planet Change 44:1–9

    Article  Google Scholar 

  8. Biau G, Zorita E, von Storch H, Wackernagel H (1999) Estimation of precipitation by kriging in the EOF space of the sea level pressure field. J Clim 12:1070–1085

    Article  Google Scholar 

  9. Bladé I, Liebmann B, Fortuny D, Van Oldenborgh GJ (2011) Observed and simulated impacts of the summer NAO in Europe: implications for projected drying in the Mediterranean region. Clim Dyn. doi:10.1007/s00382-011-1195-x

  10. Brunet M, Sigro J, Jones PD, Saladie O, Aguilar E, Moberg A, Walter A (2007) Long- term changes in extreme temperatures and precipitation in Spain. Contrib Sci 3:331–342

    Google Scholar 

  11. Cassou C, Terray L, Phillips AS (2005) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811. doi:10.1175/JCLI3506.1

    Article  Google Scholar 

  12. Cattell RB (1966) The scree test for the number of factors. Multivar Behav Res 1:245–276

    Article  Google Scholar 

  13. Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  Google Scholar 

  14. Conte M, Giuffrida A, Tedesco S (1989) The Mediterranean Oscillation. Impact on precipitation and hydrology in Italy. In Conference on Climate Water. Publications of the Academy of Finland: Helsinki, 121–137

  15. Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2(1):45–65. doi:10.1002/wcc.81

    Article  Google Scholar 

  16. Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European summer heat waves since 1880. J Geophys Res 112:D15103. doi:10.1029/2007JD008510

    Article  Google Scholar 

  17. Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000a) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425

    Article  Google Scholar 

  18. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000b) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  Google Scholar 

  19. El Kenawy A, López-Moreno JI, Vicente-Serrano SM (2011) Recent trends in daily temperature extremes over northeastern Spain (1960-2006). Nat Hazards Earth Syst Sci 11(9):2583–2603

    Article  Google Scholar 

  20. El Kenawy A, López-Moreno I, Vicente-Serrano SM, Stepanek P (2013a) An assessment of the role of homogenization protocol in the performance of daily temperature series and trends: application to northeastern Spain. Int J Climatol 33:87–108. doi:10.1002/joc.3410

    Article  Google Scholar 

  21. El Kenawy A, López-Moreno JI, Vicente-Serrano SM (2013b) Summer temperature extremes in northeastern Spain: spatial regionalization and links to atmospheric circulation (1960-2006). Theor Appl Climatol 113(3–4):387–405. doi:10.1007/s00704-012-0797-5

    Article  Google Scholar 

  22. Favà V, Curto JJ, Llasat MC (2016) Relationship between the summer NAO and maximum temperatures for the Iberian Peninsula. Theor Appl Climatol 126:77. doi:10.1007/s00704-015-1547-2

    Article  Google Scholar 

  23. Fernández-Montes S, Rodrigo FS (2012) Trends in seasonal indices of daily temperature extremes in the Iberian Peninsula, 1929-2005. Int J Climatol 32(15):2320–2332. doi:10.1002/joc.3399

    Article  Google Scholar 

  24. Fernández-Montes S, Rodrigo FS, Seubert S, Sousa PM (2013) Spring and summer extreme temperatures in Iberia during last century in relation to circulation types. Atmos Res 127:154–177. doi:10.1016/j.atmosres.2012.07.013

    Article  Google Scholar 

  25. Folland CK, Miller C, Bader D, Crowe M, Jones P, Plummer N, Richman M, Parker DE, Rogers J, Scholefield P, Lee JQ (1999) Workshop on indices and indicators for climate extremes, Asheville, NC, USA, 3–6 June 1997—breakout group C: temperature indices for climate extremes. Clim Chang 42:31–43

    Article  Google Scholar 

  26. Folland CK, Karl TR, Christy JR, Clarke RA, Gruza GV, Jouzel J, Mann ME, Oerlemans J, Salinger M, Wang S (2001) In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Observed climate variability and change. Climate change: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, Cambridge

    Google Scholar 

  27. Font I (2000) Climatología de España y Portugal. Ediciones Universidad de Salamanca, Spain, p 422

    Google Scholar 

  28. Fuchs S, Keiler M, Sokratov S, Shnyparkov A (2013) Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management. Nat Hazards 68(3):1217–1241. doi:10.1007/s11069-012-0508-7

    Article  Google Scholar 

  29. Hartigan JA, Wong MA (1979) A K-means clustering algorithm. Appl Stat 28:100–108

    Article  Google Scholar 

  30. Hertig E, Seubert S, Jacobiet J (2010) Temperature extremes in the Mediterranean area: trends in the past and assessments for the future. Nat Hazards Earth Syst Sci 10:2039–2050

    Article  Google Scholar 

  31. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (2001) Climate change 2001: the scientific basis. Eds., Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, p 944

    Google Scholar 

  32. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation. American Geophysical Union, Washington, DC, pp 1–35

    Google Scholar 

  33. Ionac N, Matei M (2014) The influence of European climate variability mechanism on air temperatures in Romania. De Gruyter Open. doi:10.2478/pesd-2014-0001

  34. IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Summary for policy makers. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  35. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471

    Article  Google Scholar 

  36. Karl TR, Easterling DR (1999) Climate extremes: selected review and future research directions. Clim Chang 42:309–325

    Article  Google Scholar 

  37. Karl TR, Knight RW, Baker B (2000) The record breaking global temperature of 1997 and 1998: evidence for an increase in the rate of global warming? Geophys Res Lett 27:719–722

    Article  Google Scholar 

  38. Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Chang 21:289–302

    Article  Google Scholar 

  39. Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680

    Article  Google Scholar 

  40. Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, Van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22(12):1441–1453. doi:10.1002/joc.773

    Article  Google Scholar 

  41. Kunkel KE, Pielke RA, Changnon SA (1999) Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review. Bull Am Meteorol Soc 80:1077–1098

    Article  Google Scholar 

  42. Luna MY, Almarza C (2004) Interpolation of 1961–2002 daily climatic data in Spain. Proceedings of International Meeting on Spatial Interpolation in Climatology and Meteorology. Budapest, Hungry 2004

  43. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Nature 303:1499–1503

    Google Scholar 

  44. Martín ML, Luna M, Morata A, Valero F (2004) North Atlantic teleconnection patterns of low-frequency variability and their links with springtime precipitation in the western Mediterranean. Int J Climatol 24:213–230

    Article  Google Scholar 

  45. Martín ML, Valero F, Morata A, Luna MY, Pascual A, Santos-Muñoz D (2011a) Springtime coupled modes of regional wind in the Iberian Peninsula and large-scale variability patterns. Int J Climatol 31:880–895. doi:10.1002/joc.2127

    Article  Google Scholar 

  46. Martín ML, Valero F, Pascual A, Morata A, Luna MY (2011b) Springtime connections between the large-scale sea level pressure field and gust wind speed over Iberia. Nat Hazards Earth Syst Sci 11:191–203

    Article  Google Scholar 

  47. Martin-Vide J, Lopez-Bustins JA (2006) The Western Mediterranean oscillation and rainfall in the Iberian Peninsula. Int J Climatol 26(11):1455–1475

    Article  Google Scholar 

  48. Matheron G (1962) Traite de Geostatistique appliquee. Editions Technip

  49. Merino A, Fernández S, Hermida L, López L, Sánchez JL, García-Ortega E, Gascón E (2014) Snowfall in the northwest Iberian Peninsula: synoptic circulation patterns and their influence on snow day trends. Sci World J 2014:480275. doi:10.1155/2014/480275

    Article  Google Scholar 

  50. Merino A, López L, Hermida L, Sánchez JL, García-Ortega E, Gascón E, Fernández-González S (2015) Identification of drought phases in a 110-year record from Western Mediterranean basin: trends, anomalies and periodicity analysis for Iberian Peninsula. Glob Planet Change 133:96–108

    Article  Google Scholar 

  51. Merino A, Fernández-Vaquero M, López L, Fernández-González S, Hermida L, Sánchez JL, García-Ortega E, Gascón E (2016) Large-scale patterns of daily precipitation extremes on the Iberian Peninsula. Int J Climatol doi. doi:10.1002/joc.4601

  52. Moberg A, Jones PD, Lister D, Walther A, Brunet M, Jacobeit J, Alexander LV, Della-Marta PM, Luterbacher J, Yiou P, Chen D, Tank AMGK, Saladié O, Sigró J, Aguilar E, Alexandersson H, Almarza C, Auer I, Barriendos M, Begert M, Bergström H, Böhm R, Butler CJ, Caesar J, Drebs A, Founda D, Gerstengarbe F-W, Micela G, Maugeri M, Österle H, Pandzic K, Petrakis M, Srnec L, Tolasz R, Tuomenvirta H, Werner PC, Linderholm H, Philipp A, Wanner H, Xoplaki E (2006) Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901-2000. J Geophys Res 111(22):D22106. doi:10.1029/2006JD007103

    Article  Google Scholar 

  53. Morata A, Martín ML, Luna MY, Valero F (2006) Self-similarity patterns of precipitation in the Iberian Peninsula. Theor Appl Climatol 85:41–59

    Article  Google Scholar 

  54. Morata A, Martín ML, Sotillo M, Valero F, Luna MY (2008) Iberian autumn precipitation characterization through observed, simulated and reanalysed data. Adv Geosci 16:49–54

    Article  Google Scholar 

  55. Ninyerola M, Pons X, Roure JM (2007) Objective air temperature mapping for the Iberian Peninsula using spatial interpolation and GIS. Int J Climatol 27(9):1231–1242. doi:10.1002/joc.1462

    Article  Google Scholar 

  56. North GR, Bell TL, Calahan RF (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706

    Article  Google Scholar 

  57. Palutikof JP (2003) Analysis of Mediterranean climate data: measured and modelled. In: Bolle HJ (ed) Mediterranean climate: variability and trends. Springer, Berlin

    Google Scholar 

  58. Peña-Angulo D, Trigo RM, Cortesi N, González-Hidalgo JC (2016) The influence of weather types on the monthly average maximum and minimum temperatures in the Iberian Peninsula. Atmos Res 178-179:217–230. doi:10.1016/j.atmosres.2016.03.022

    Article  Google Scholar 

  59. Pfahl S, Wernli H (2012) Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys Res Lett 39:L12807. doi:10.1029/2012GL052261

    Article  Google Scholar 

  60. Ramos A, Trigo R, Santo F (2011) Evolution of extreme temperatures over Portugal: recent changes and future scenarios. Clim Res 48:177–192

    Article  Google Scholar 

  61. del Río S, Herrero L, Fraile R, Penas A (2011) Spatial distribution of rainfall trends in Spain (1961–2006). Int J Climatol 31:656–667. doi:10.1002/joc.2111

    Article  Google Scholar 

  62. Rodríguez-Puebla C, Encinas AH, García-Casado LA, Nieto S (2010) Trends in warm days and cold nights over the Iberian Peninsula: relationships to large-scale variables. Clim Chang 100:667–684

    Article  Google Scholar 

  63. Santos JA, Pfahl S, Pinto JG, Wernli H (2015) Mechanisms underlying temperature extremes in Iberia: a Lagrangian perspective. Tellus Ser A Dyn Meteorol Oceanogr 67(1):1–15. doi:10.3402/tellusa.v67.26032

    Article  Google Scholar 

  64. Schar C, Vidale PL, Luthi D, Frei C, Haberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  Google Scholar 

  65. Seneviratne SI, Nicholls N, Easterling D, Goodess CM, Kanae S et al (2012) Changes in climate extremes and their impacts on the natural physical environment. In: Managing the risks of extreme events and disasters to advance climate change adaptation. Cambridge University Press, Cambridge, UK, pp 109–230

  66. Shen SSP, Dzikowski P, Li G, Griffith D (2001) Interpolation of 1961–97 daily temperature and precipitation data onto Alberta polygons of ecodistrict and soil landscapes of Canada. J Appl Meteorol 40:2162–2177

    Article  Google Scholar 

  67. Sotillo MG, Aznar R, Valero F (2006) Mediterranean off-shore extreme winds analysis from the 44-year HIPOCAS database: different approaches towards the estimation of return periods and levels of extreme values. Adv Geosci 7:1–4

    Article  Google Scholar 

  68. Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. Clim Chang 79:185–211

    Article  Google Scholar 

  69. Trigo RM, Palutikof JP (2001) Precipitation scenarios over Iberia: a comparison between direct GCM output and different downscaling techniques. J Clim 14:4422–4446

    Article  Google Scholar 

  70. Trigo RM, Pereira JMC, Pereira MG, Mota B, Calado TJ, Dacamara CC, Santo FE (2006) Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. Int J Climatol 26(13):1741–1757

    Article  Google Scholar 

  71. Valero F, Martín ML, Sotillo MG, Morata A, Luna MY (2009) Characterization of the autumn Iberian precipitation from long-term data sets: comparison between observed and hindcasted data. Int J Climatol 29:527–541. doi:10.1002/joc.1526

    Article  Google Scholar 

  72. Vicente-Serrano SM, Beguería S, López Moreno JI, El Kenawy A, Angulo MM (2009) Daily atmospheric circulation events and extreme precipitation risk in northeast Spain: role of the North Atlantic Oscillation, the Western Mediterranean Oscillation, and the Mediterranean Oscillation. J Geophys Res 114:D08106. doi:10.1029/2008JD011492

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the research projects METEORISK PROJECT (RTC-2014-1872-5), CGL2011-25327, AYA2011-29967-C05-02, PCIN-2014-013-C07-04 (UE ERA-NET Plus NEWA Project), ESP2013-47816-C4-4-P, CGL2010-15930, CGL2016-78702, and by the Instituto de Matemática Interdisciplinar (IMI) of the Universidad Complutense. The authors also wish to thank the Spanish Meteorological Agency (AEMET) for providing the Spanish Temperature data and to the European Climate Assessment & Dataset project (ECA&D) for the Portuguese temperature data. NCEP Reanalysis data were provided by the NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, USA from their Web site at http://www.cdc.noaa.gov.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrés Merino.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Merino, A., Martín, M.L., Fernández-González, S. et al. Extreme maximum temperature events and their relationships with large-scale modes: potential hazard on the Iberian Peninsula. Theor Appl Climatol 133, 531–550 (2018). https://doi.org/10.1007/s00704-017-2203-9

Download citation