Skip to main content
Log in

On the association between the recent episode of the quasi-biennial oscillation and the strong El Niño event

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Since February 2016, the equatorial quasi-biennial oscillation (QBO) in zonal wind of the lower stratosphere exhibited anomalous behavior. In more detail, it broke down from its typical pattern and the eastward stratospheric winds unexpectedly reversed to a westward direction. We herewith attempt to detect whether this unprecedented event could be considered as a result of plausible long-range correlations in the QBO temporal evolution. The analyses performed using all the available QBO data sets showed that such an interpretation could not be inferred, because the temporal evolution of the equatorial zonal wind in the lower stratosphere does not exhibit power-law behavior. Further, the natural time analysis of the QBO data indicates precursory behavior before the maximization of the zonal wind velocity and that the recent strong El Niño event might be related with the aforementioned unprecedented behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anstey J, Osprey S, Butchart N, Hamilton K, Gray L, Baldwin M (2017) Report on the SPARC QBO workshop: the QBO and its global influence—past, present and future 26–30 September 2016, Oxford, UK. SPARC newsletter n° 48:33–44

  • Ausloos M, Ivanova K (2001) Power-law correlations in the southern-oscillation-index fluctuations characterizing El Niño. Phys Rev E 63:047201. doi:10.1103/PhysRevE.63.047201

    Article  Google Scholar 

  • Calvo N, Garcia RR, Randel WJ, Marsh D (2010) Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J Atmos Sci 67:2331–2340

    Article  Google Scholar 

  • Christiansen B, Yang S, Madsen MS (2016) Do strong warm ENSO events control the phase of the stratospheric QBO? Geophys Res Lett 43. doi:10.1002/2016GL070751

  • Cracknell AP, Varotsos CA (1994) Ozone depletion over Scotland as derived from Nimbus-7 TOMS measurements. Int J Remote Sens 15(13):2659–2668

  • Cracknell AP, Varotsos CA (1995) The present status of the total ozone depletion over Greece and Scotland: a comparison between Mediterranean and more northerly latitudes. Int J Remote Sens 16(10):1751–1763

  • Cracknell AP, Varotsos CA (2007) Fifty years after the first artificial satellite: From Sputnik 1 to ENVISAT. Int J Remote Sens 28(10):2071–2072

  • Cracknell AP, Varotsos CA (2011) New aspects of global climate-dynamics research and remote sensing. Int J Remote Sens 32(3):579–600

  • Donges JF, Heitzig J, Beronov B, Wiedermann M, Runge J, Feng QY, Tupikina L, Stolbova V, Donner RV, Marwan N, Dijkstra HA, Kurths J (2015) Unified functional network and nonlinear time series analysis for complex systems science: the pyunicorn package. Chaos: Int J Nonlinear Sci 25(11):113101. doi:10.1063/1.4934554

    Article  Google Scholar 

  • Dunkerton J (2016) The quasi-biennial oscillation of 2015–16: hiccup or death spiral? Geophys Res Let. doi:10.1002/2016GL070921

  • Ebel A, Memmesheimer M, Jakobs HJ (2007) Chemical perturbations in the planetary boundary layer and their relevance for chemistry transport modelling. Bound-Layer Meteorol 125:265–278. doi:10.1007/s10546-007-9157-x

    Article  Google Scholar 

  • Efstathiou MN, Varotsos CA (2010) On the altitude dependence of the temperature scaling behaviour at the global troposphere. Int J Rem Sens 31(2):343–349

    Article  Google Scholar 

  • Efstathiou MN, Varotsos CA (2012) Intrinsic properties of Sahel precipitation anomalies and rainfall. Theor Appl Climatol 109(3–4):627–633

    Article  Google Scholar 

  • Efstathiou MN, Varotsos CA (2013) On the 11 year solar cycle signature in global total ozone dynamics. Meteorol Appl 20(1):72–79

    Article  Google Scholar 

  • Franzke C (2009) Multi-scale analysis of teleconnection indices: climate noise and nonlinear trend analysis. Nonlinear Proc Geophys 16(1):65–76

    Article  Google Scholar 

  • Grassl H (2000) Status and improvements of coupled general circulation models. Science 288:1991–1997

    Article  Google Scholar 

  • Grassl H (2011) Climate change challenges. Surv Geophys 32:319–328

    Article  Google Scholar 

  • Hamilton K, Osprey S, Butchart N (2015) Modeling the stratosphere’s “heartbeat”. Eos 96. doi:10.1029/2015EO032301.

  • Holton JR, Lindzen RS (1972) An updated theory for the quasi-biennial cycle of the tropical stratosphere. J Atmos Sci 29:1076–1080

    Article  Google Scholar 

  • Hu K, Ivanov PC, Chen Z, Carpena P, Stanley HE (2001) Effect of trends on detrended fluctuation analysis. Phys Rev E 64(1):011114

    Article  Google Scholar 

  • Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316:87–114. doi:10.1016/S0378-4371(02)01383-3

    Article  Google Scholar 

  • Kawatani Y, Hamilton K (2013) Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling. Nature 497:478–481. doi:10.1038/nature12140

    Article  Google Scholar 

  • Kondratyev KYa, Varotsos CA (1995a) Volcanic eruptions and global ozone dynamics. Int J Remote Sens 16(10):1887–1895

  • Kondratyev KYa, Varotsos CA (1995b) Atmospheric ozone variability in the context of global change. Int J Remote Sens 16(10): 1851–1881

  • Kondratyev KYa, Varotsos C (2002) Review article-remote sensing and global tropospheric ozone observed dynamics. Int J Remote Sens 23(1):159–178

  • Krapivin VF, Shutko AM (2012) Information technologies for remote monitoring of the environment. Springer/Praxis, Chichester

    Book  Google Scholar 

  • Lovejoy S (2015) A voyage through scales, a missing quadrillion and why the climate is not what you expect. Clim Dynam 44(11–12):3187–3210

    Article  Google Scholar 

  • Mandelbrot B, van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev 10:422–437

    Article  Google Scholar 

  • Maraun D, Rust HW, Timmer J (2004) Tempting long-memory—on the interpretation of DFA results. Nonlinear Process Geophys 11:495–503

    Article  Google Scholar 

  • Maruyama T (1997) The quasi-biennial oscillation (QBO) and equatorial waves—a historical review. Meteor Geophys 48(1):1–17

    Article  Google Scholar 

  • McIntyre ME (2013) The quasi-biennial oscillation (QBO): some points about the terrestrial QBO and the possibility of related phenomena in the solar interior. The Solar Engine and Its Influence on Terrestrial Atmosphere and Climate, 25: 293.

  • Naujokat B (1986) An update of the observed quasi-biennial oscillation of stratospheric winds over the tropics. J Atmos Sci 43:1873–1877

    Article  Google Scholar 

  • Newman PA, Coy L, Pawson S, Lait R (2016) The anomalous change in the QBO in 2015–2016. Geophys Res Lett. doi:10.1002/2016GL070373

  • Osprey SM, Butchart N, Knight JR, Scaife AA, Hamilton K, Anstey JA, Schenzinger V, Zhang C (2016) An unexpected disruption of the atmospheric quasi-biennial oscillation. Science. doi:10.1126/science.aah4156

  • Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49(2):1685–1689

    Article  Google Scholar 

  • Plumb RA (1997) The interaction of two internal waves with the mean flow: implications for the theory of the quasi-biennial oscillation. J Atmos Sci 34:1847–1858

    Article  Google Scholar 

  • Rajendran K, Moroz IM, Read PL, Osprey SM (2016) Synchronisation of the equatorial QBO by the annual cycle in tropical upwelling in a warming climate. Q J R Meteorol Soc Part B 142(695):1111–1120. doi:10.1002/qj.2714

    Article  Google Scholar 

  • Reed RG, Campbell WJ, Rasmussen LA, Rogers G (1961) Evidence of downward-propagating annual wind reversal in the equatorial stratosphere. J Geophys Res 66:813–818

    Article  Google Scholar 

  • Sarlis NV (2017) Entropy in natural time and the associated complexity measures. Entropy 19(4):177. doi:10.3390/e19040177

    Article  Google Scholar 

  • Sarlis NV, Skordas ES, Varotsos PA, Nagao T, Kamogawa M, Tanaka H, Uyeda S (2013) Minimum of the order parameter fluctuations of seismicity before major earthquakes in Japan. Proc Natl Acad Sci U S A 110:13734–13738. doi:10.1073/pnas.1312740110

    Article  Google Scholar 

  • Sarlis NV, Skordas ES, Varotsos PA, Nagao T, Kamogawa M, Uyeda S (2015) Spatiotemporal variations of seismicity before major earthquakes in the Japanese area and their relation with the epicentral locations. Proc Natl Acad Sci U S A 112:986–989. doi:10.1073/pnas.1422893112

    Article  Google Scholar 

  • Taguchi M (2010) Observed connection of the stratospheric quasi-biennial oscillation with El Niño–Southern Oscillation in radiosonde data. J Geophys Res Atmos 115(D18). doi:10.1029/2010JD014325

  • Uyeda S, Kamogawa M, Tanaka H (2009) Analysis of electrical activity and seismicity in the natural time domain for the volcanic-seismic swarm activity in 2000 in the Izu Island region, Japan. J Geophys Res 114:B02310. doi:10.1029/2007JB005332

    Article  Google Scholar 

  • Varotsos C (2002) The southern hemisphere ozone hole split in 2002. Environ Sci Pollut Res 9(6):375–376

  • Varotsos C (2005a) Airborne measurements of aerosol, ozone, and solar ultraviolet irradiance in the troposphere. J Geophys Res: Atmospheres 110(D9)

  • Varotsos C (2005b) Power-law correlations in column ozone over Antarctica. Int J Rem Sens 26:3333–3342

    Article  Google Scholar 

  • Varotsos C, Cartalis C (1991). Re-evaluation of surface ozone over Athens, Greece, for the period 1901-1940. Atmos Res 26(4):303–310

  • Varotsos C, Kalabokas P, Chronopoulos G (1994) Association of the laminated vertical ozone structure with the lower-stratospheric circulation. J Appl Meteorol 33(4):473–476

  • Varotsos PA, Sarlis NV, Skordas ES (2003) Long range correlations in the signals that precede rupture: further investigations. Phys Rev E 67. doi:10.1103/PhysRevE.67.021109

  • Varotsos C, Assimakopoulos MN, Efstathiou M (2007a) Technical note: long-term memory effect in the atmospheric CO2 concentration at Mauna Loa. Atmos Chem Phys 7:629–634

    Article  Google Scholar 

  • Varotsos P, Sarlis N, Skordas E, Lazaridou M (2007b) Identifying sudden cardiac death risk and specifying its occurrence time by analyzing electrocardiograms in natural time. Appl Phys Lett 91:064106. doi:10.1063/1.2768928

    Article  Google Scholar 

  • Varotsos PA, Sarlis NV, Skordas ES (2011a) Scale-specific order parameter fluctuations of seismicity in natural time before mainshocks. EPL 96:59002. doi:10.1209/0295-5075/96/59002

    Article  Google Scholar 

  • Varotsos PA, Sarlis NV, Skordas ES, Uyeda S, Kamogawa M (2011b) Natural time analysis of critical phenomena. Proc Natl Acad Sci U S A 108:11361–11364

    Article  Google Scholar 

  • Varotsos CA, Efstathiou MN, Cracknell AP (2013a) On the scaling effect in global surface air temperature anomalies. Atmos Chem Phys 13(10):5243–5253

    Article  Google Scholar 

  • Varotsos CA, Efstathiou MN, Cracknell AP (2013b) Plausible reasons for the inconsistencies between the modeled and observed temperatures in the tropical troposphere. Geophys Res Lett 40(18):4906–4910

    Article  Google Scholar 

  • Varotsos PA, Sarlis NV, Skordas ES, Lazaridou MS (2013c) Seismic electric signals: an additional fact showing their physical interconnection with seismicity. Τectonophysics 589:116–125. doi:10.1016/j.tecto.2012.12.020

    Article  Google Scholar 

  • Varotsos CA, Franzke CL, Efstathiou MN, Degermendzhi AG (2014) Evidence for two abrupt warming events of SST in the last century. Theor Appl Climatol 116(1–2):51–60

  • Varotsos CA, Tzanis C, Cracknell AP (2016a) Precursory signals of the major El Niño southern oscillation events. Theor Appl Climatol 124(3–4):903–912

    Article  Google Scholar 

  • Varotsos CA, Tzanis CG, Sarlis NV (2016b) On the progress of the 2015–2016 El Niño event. Atmos Chem Phys 16(4):2007–2011

    Article  Google Scholar 

  • Veryard RG, Ebdon RA (1961) Fluctuations in tropical stratospheric winds. Meteorol Mag 90:125–143

    Google Scholar 

  • Weber RO, Talkner P (2011) Spectra and correlations of climate data from days to decades. J Geophys Res 106:20131–20144

    Article  Google Scholar 

  • Wiener N (1950) Extrapolation, interpolation and smoothing of stationary time series. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

The sources of the data used in this study are indicated in situ in the above-mentioned analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas A. Varotsos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Funding

This work was unfunded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varotsos, C.A., Sarlis, N.V. & Efstathiou, M. On the association between the recent episode of the quasi-biennial oscillation and the strong El Niño event. Theor Appl Climatol 133, 569–577 (2018). https://doi.org/10.1007/s00704-017-2191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2191-9

Navigation