Skip to main content

Advertisement

Log in

Climate-induced changes in river water temperature in North Iberian Peninsula

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

This study evaluates the effects of climate change on the thermal regime of 12 rivers in the Northern Iberian Peninsula by using a non-linear regression model that employs air temperature as the only input variable. Prediction of future air temperature was obtained from five regional climate models (RCMs) under emission scenario Special Report on Emissions Scenarios A1B. Prior to simulation of water temperature, air temperature was bias-corrected (B-C) by means of variance scaling (VS) method. This procedure allows an improvement of fit between observed and estimated air temperature for all climate models. The simulation of water temperature for the period 1990–2100 shows an increasing trend, which is higher for the period of June-August (summer) and September-November (autumn) (0.0275 and 0.0281 °C/year) than that of winter (December-February) and spring (March-May) (0.0181 and 0.0218 °C/year). In the high air temperature range, daily water temperature is projected to increase on average by 2.2–3.1 °C for 2061–2090 relative to 1961–1990. During the coldest days, the increment of water temperature would range between 1.0 and 1.7 °C. In fact, employing the numbers of days that water temperature exceeded the upper incipient lethal temperature (UILT) for brown trout (24.7 °C) has been noted that this threshold is exceeded 14.5 days per year in 2061–2090 while in 1961–1990, this values was exceeded 2.6 days per year of mean and 3.6 days per year in observation period (2000–2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almodóvar A, Nicola GG, Ayllón D, Elvira B (2012) Global warming threatens the persistence of Mediterranean brown trout. Glob Chang Biol 18:1549–1560. doi:10.1111/j.1365-2486.2011.02608.x

    Article  Google Scholar 

  • Beaufort A, Moatar F, Curie F, Ducharne A, Bustillo V, Thiéry D (2016) River temperature modelling by Strahler order at the regional scale in the Loire River basin, France. River Res Applic 32:597–609. doi:10.1002/rra.2888

    Article  Google Scholar 

  • Broadmeadow SB, Jones JG, Langford TEL, Shaw PJ, Nisbet TR (2011) The influence of riparian shade on lowland stream water temperatures in southern England and their viability for brown trout. River Res Applic 27:226–237. doi:10.1002/rra.1354

    Article  Google Scholar 

  • Caissie D (2006) The thermal regime of rivers: a review. Freshw Biol 51:1389–1406. doi:10.1111/j.1365-2427.2006.01597.x

    Article  Google Scholar 

  • Caissie D, El-Jabi N, Satish MG (2001) Modelling of maximum daily water temperatures in a small stream using air temperatures. J Hydrol 251:14–28

    Article  Google Scholar 

  • Caissie D, Satish MG, El-Jabi N (2007) Predicting water temperatures using a deterministic model: application on Miramichi River catchments (New Brunswick, Canada). J Hydrol 336:303–315. doi:10.1016/j.jhydrol.2007.01.008

    Article  Google Scholar 

  • Caldwell P, Segura C, Laird SG, Sun G, McNulty SG, Sandercock M, Boggs J, Vose JM (2015) Short-term stream water temperature observations permit rapid assessment of potential climate change impacts. Hydrol Process 29:2196–2211. doi:10.1002/hyp.10358

    Article  Google Scholar 

  • Chen J, Brissette FP, Leconte R (2011a) Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J Hydrol 401:190–202. doi:10.1016/j.hydrol.2011.02.020

    Article  Google Scholar 

  • Chen J, Brissette FP, Chaumont D, Braun M (2011b) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49:4187–4205. doi:10.1002/wrcr.20331

    Article  Google Scholar 

  • Connell DW, Miller GJ (1984) Chemistry and ecotoxicology pollution. Chapter 12: thermal pollution. Wiley, New York

    Google Scholar 

  • Doadrio I (2002) Atlas y libro rojo de los peces continentales de España. Dirección General de Conservación de la Naturaleza. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Elliot JM, Hurley MA, Fryer RJ (1995) A new, improved growth model for brown trout, Salmo trutta. Funct Ecol 9:290–298

    Article  Google Scholar 

  • Fang GH, Yang J, Chen YN, Zammit C (2015) Comparing bias correction methods in downscaling meteorological variables for a hydrological impact study in an arid area in China. Hydrol Earth Syst Sci 19:2547–2559. doi:10.5194/hess-19-2547-2015

    Article  Google Scholar 

  • Ficklin DL, Luo Y, Stewart IT, Maurer EP (2012) Development and application of a hydrometeorological stream temperature model within the soil and water assessment tool. Water Resour Res 48:W01511. doi:10.1029/2011WR011256

    Article  Google Scholar 

  • Hardenbicker P, Viergutz C, Becker A, Kirchesch V, Nilson E, Fischer H (2016) Water temperature increases in the river Rhine in response to climate change. Reg Environ Chang. doi:10.1007/s10113-016-1006-3

  • Hulme M, Barrow EM, Arnell NW, Harrison PA, Johns TC, Downing TE (1999) Relative impacts of human-induced climate change and natural climate variability. Nature 397:688–691. doi:10.1038/17789

    Article  Google Scholar 

  • Johnson MF, Wilby RL, Toone JA (2014) Inferring air-water temperature relationships from river and catchment properties. Hydrol Process 28:2912–2928. doi:10.1002/hyp.9842

    Google Scholar 

  • Jones LA, Muhlfeld CC, Marshall LA, McGlynn BL, Kershner JL (2014) Estimating thermal regimes of bull trout and assessing the potential effects of climate warming on critical habitats. River Res Applic 30:204–216. doi:10.1002/rra.2638

    Article  Google Scholar 

  • Kittel TGF, Rosenbloom NA, Painter TH, Schimel DS (1995) The VEMAP integrated database for modelling United States ecosystem/vegetation sensitivity to climate change. J Biogeogr 22(4/5):857–862. doi:10.2307/2845986

    Article  Google Scholar 

  • Koch H, Grünewald U (2010) Regression models for daily stream temperature simulation: case studies for the river Elbe, Germany. Hydrol Process 24:3826–3836. doi:10.1002/hyp.7814

    Article  Google Scholar 

  • Leander R, Buishand TA (2007) Resampling of regional climate model output for the simulation of extreme river flows. J Hydrol 332:487–496. doi:10.1016/j.jhydrol.2006. 08.006

    Article  Google Scholar 

  • van der Linden P, Mitchell JFB (eds.) 2009. ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK. 160pp.

  • Luo Y, Ficklin DL, Liu X, Zhang M (2013) Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Sci Total Environ 450-451:72–82. doi:10.1016/j.scitotenv.2013.02.004

    Article  Google Scholar 

  • Mohseni O, Stefan HG (1999) Stream temperature/air temperature relationship: a physical interpretation. J Hydrol 218:128–141

    Article  Google Scholar 

  • Mohseni O, Stefan HG, Erickson TR (1998) A nonlinear regression model for weekly stream temperatures. Water Resour Res 34(10):2685–2692. doi:10.1029/98WR01877

    Article  Google Scholar 

  • Morrill J, Bales R, Conklin M (2005) Estimating stream temperature from air temperature: implications for future water quality. J Environ Eng 131:139–146. doi:10.1061/(ASCE)0733-9372(2005)131:1(139)

    Article  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) IPCC special report on emission scenarios. University Cambridge Press, Cambridge

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I—a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Olsson T, Jakkila J, Veijalainen N, Backman L, Kaurola J, Vehviläinen B (2015) Impacts of climate change on temperature, precipitation and hydrology in Finland—studies using bias corrected regional climate model data. Hydrol Earth Syst Sci 19:3217–3238. doi:10.5194/hess-19-3217-2015

    Article  Google Scholar 

  • Ouellet V, Secretan Y, St-Hilaire A, Morin J (2014) Water temperature modelling in a controlled environment: comparative study of heat budget equations. Hydrol Process 28:279–292. doi:10.1002/hyp.9571

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. doi:10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Räty O, Räisänen J, Ylhäisi JS (2014) Evaluation of delta change and bias correction methods for future daily precipitation: intermodel cross-validation using ENSEMBLES simulations. Clim Dyn 42:2287–2303. doi:10.1007/s00382-014-2130-8

    Article  Google Scholar 

  • Rojas R, Feyen L, Bianchi A, Dosio A (2012) Assessment of future flood hazard in Europe using a large ensemble of bias-corrected regional climate simulations. J Geophys Res 117:D17109. doi:10.1029/2012JD017461

    Google Scholar 

  • Sahoo GB, Schladow SG, Reuter JE (2009) Forecasting stream water temperature using regression analysis, artificial neural network, and chaotic non-linear dynamic models. J Hydrol 378:325–342. doi:10.1016/j.jhydrol.2009.09.037

    Article  Google Scholar 

  • Segura C, Caldwell P, Sun G, McNulty S, Zhang Y (2015) A model to predict stream water temperature across the conterminous USA. Hydrol Process 29:2178–2195. doi:10.1002/hyp.10357

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  • Shabalova MV, van Deursen WPA, Buishand TA (2003) Assessing future discharge of the river Rhine using regional climate model integrations and a hydrological model. Clim Res 23:233–246

    Article  Google Scholar 

  • Soto B (2016) Assessment of trends in stream temperature in the North of Iberian Peninsula using a nonlinear regression model for the period 1950-2013. River Res Applic 32:1355–1364. doi:10.1002/rra.2971

    Article  Google Scholar 

  • Stefan H, Preud’homme EB (1993) Stream temperature estimation from air temperature. Water Resour Bull 29:27–45

    Article  Google Scholar 

  • St-Hilaire A, Ouarda BMJ, Bargaoui Z, Daigle A, Bilodeau L (2011) Daily river temperature forecast model with a k-nearest neighbour approach. Hydrol Process 26:1302–1310. doi:10.1002/hyp.8216

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change studies: review and evaluation of different methods. J Hydrol 456-457:2–29. doi:10.1016/j.jhydrol.2012.05.052

    Article  Google Scholar 

  • van Vliet M, Fransen W, Yearsley J, Ludwig F, Haddeland I, Lettenmaier D, Kabat P (2013) Global river discharge and water temperature under climate change. Glob Planet Chang 23:450–464. doi:10.1016/j.gloenvcha.2012.11.002

    Article  Google Scholar 

  • Webb BW (1996) Trends in stream and river water temperature. Hydrol Process 10:205–226

    Article  Google Scholar 

  • Xu H, Luo Y (2015) Climate change and its impacts in two climate regions in China. Hydrol Earth Syst Sci 19:4609–4618. doi:10.1594/hess-19-4609-2015

    Article  Google Scholar 

Download references

Acknowledgements

This study has been supported by the research project INCITE09 203 072 PR financed by Xunta de Galicia. We wish to thank Confederación Hidrográfica del Ebro, Confederación Hidrográfica del Miño-Sil, Diputación Foral de Bizkaia, and Diputación Foral de Gipuzkoa for providing hydrological and meteorological data. Other climatological data were delivered by Galician Meteorological Agency (Meteogalicia), Navarra Government and La Rioja Government. The ENSEMBLES data used were funded by the EU FP6 integrated project (http://ensembles-eu.metoffice.com) under contract Number 505539 whose support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedicto Soto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soto, B. Climate-induced changes in river water temperature in North Iberian Peninsula. Theor Appl Climatol 133, 101–112 (2018). https://doi.org/10.1007/s00704-017-2183-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2183-9

Navigation