Trend of annual temperature and frequency of extreme events in the MATOPIBA region of Brazil

Original Paper

Abstract

During the 1980s, a new agricultural frontier arouse in Brazil, which occupied part of the states of Maranhão, Tocantins, Piauí, and Bahia. Currently, this new frontier is known as the MATOPIBA region. The region went through intense transformations in its social and environmental characteristics, with the emergence of extensive areas of intensive agriculture and large herds. The purpose of this research was to study the climatic variabilities of temperature in the MATOPIBA region through extreme climate indexes of ClimAp tool. Data from 11 weather stations were analyzed for yearly air temperature (maximum and minimum) in the period of 1970 to 2012. To verify the trend in the series, we used methods of linear regression analysis and Kendall-tau test. The annual analysis of maximum and minimum temperatures and of the temperature extremes indexes showed a strong positive trend in practically every series (with p value less than 0.05). These results indicated that the region went through to a significant heating process in the last 3 decades. The indices of extreme also showed a significant positive trend in most of the analyzed stations, indicating a higher frequency of warm days during the year.

References

  1. Abdi H (2007) Kendall rank correlation. In: Salkind NJ (ed) Encyclopedia of measurement and statistics. Sage, Thousand OaksGoogle Scholar
  2. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLDM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):2013. doi: 10.1127/0941-2948/2013/0507 CrossRefGoogle Scholar
  3. Baldocchi D, and Ma S (2013) How will land use affect air temperature in the surface boundary layer? Lessons learned from a comparative study on the energy balance of an oak savanna and annual grassland in California, USA, Tellus B: Chemical and Physical Meteorology, 65:1, 19994. doi: 10.3402/tellusb.v65i0.19994
  4. Caesar J, Alexander L, Trewin B, Tse-Ring K, Sorany L, Vuniyayawa V, Keosavang N, Shimana A, Htay M, Karmacharya J (2011) Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971 to 2005. Int J Climatol 31(6):791–801CrossRefGoogle Scholar
  5. CONAB (2013) Companhia Nacional de Abastecimento. Boletim de monitoramento agrícola - Culturas de verão – safra 2013/2014. Região do MATOPIBA. 1(1) BrasíliaGoogle Scholar
  6. DeFries R, Houghton R, Hansen M, Field C, Skole D et al (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s. Proc Natl Acad Sci U S A 99:14256–14261CrossRefGoogle Scholar
  7. IBGE (2013) Cidades. IBGE: Censo Demográfico 2010. http://cidades.ibge.gov.br. Accessed 10 Nov 2015
  8. Kendall MG (1948) Rank correlation methods. Charles Griffin & Company Limited, LondonGoogle Scholar
  9. MAPA (2011) Brazil agribusiness projections 2010/2011 to 2020/2021. Ministry of Agriculture, Livestock and Food Supply-Strategic Management Advisory Board, AGE/MAPA, BrazilGoogle Scholar
  10. Mingoti R, Brasco M, Holler W, Lovisi Filho E, Spadotto A (2014) MATOPIBA: caracterização das áreas com grande produção de culturas anuais. Embrapa Gestão Territorial - Nota técnica 06, 2014. http://www.alice.cnptia.embrapa.br/bitstream/doc/991059/1/20140721NotaTecnica6.pdf. Accessed 15 dic 2015
  11. Miranda E, Magalhães L, Carvalho C (2014) Proposta de Delimitação Territorial do MATOPIBA. Grupo de Inteligência Territorial Estratégica – GITE/Embrapa. Nota Técnica 01. 2014. https://www.embrapa.br/gite/publicacoes/NT1_DelimitacaoMatopiba.pdf. Accessed 01 dic 2015
  12. Pina N, Mondardo M (2013) Duas faces, uma região: da pujança do agronegócio à pobreza e precariedade das populações locais no oeste da Bahia. Revista Geonorte, Edição Especial 3 7(1):1545–1556Google Scholar
  13. Pires GF (2015) Climate change and the sustainability of agricultural productivity in Brazil. These. UFV. Viçosa– BrazilGoogle Scholar
  14. Rencher AC, Christensen WF (2012) Methods of multivariate analysis, Wiley series in probability and statistics, chapter 10, multivariate regression – section 10.1, introduction, 709, 3rd edn. Wiley, Hoboken, p 19 ISBN 9781118391679Google Scholar
  15. Salvador MA (2014) Análise da Variabilidade Climática na Nova Fronteira Agrícola Do Brasil: Região do MATOPIBA. Universidade Federal de Campina Grande, Campina GrandeGoogle Scholar
  16. Santos CC (2007) Oeste da Bahia: modernização com (des) articulação econômica e social de uma região. UFBA, FFCH. 2007. 239 f. Universidade Federal da Bahia, SalvadorGoogle Scholar
  17. Santos CA (2011) Trends in indices for extremes in daily temperature over Utah, USA. Rev Bras Meteorol 26(1):19–28CrossRefGoogle Scholar
  18. Silva G, Souza W, Azevedo P (2012) Cenários de Mudanças Climáticas no Estado da Bahia através de Estudos Numéricos e Estatísticos. Rev Bras Geogr Fís 5(5)Google Scholar
  19. Spera SA, Galford GL, Coe MT, Macedo MN, Mustard JF (2016) Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob Chang Biol. doi: 10.1111/gcb.13298
  20. Stanton JM (2001) Galton, Pearson, and the peas: a brief history of linear regression for statistics instructors. J Stat Educ 9(3)Google Scholar
  21. Steffen W, Crutzen PJ, McNeill JR (2007) The anthropocene: are humans now overwhelming the great forces of nature. Ambio 36:614–621CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Instituto Nacional de Meteorologia, INMETBrasiliaBrazil
  2. 2.Unidade Acadêmica de Ciências Atmosféricas da Universidade Federal de Campina Grande UACA-UFCG, Campus de Campina GrandeCampina GrandeBrazil

Personalised recommendations