Narrowing the surface temperature range in CMIP5 simulations over the Arctic

  • Mingju Hao
  • Jianbin Huang
  • Yong Luo
  • Xin Chen
  • Yanluan Lin
  • Zongci Zhao
  • Ying Xu
Original Paper

Abstract

Much uncertainty exists in reproducing Arctic temperature using different general circulation models (GCMs). Therefore, evaluating the performance of GCMs in reproducing Arctic temperature is critically important. In our study, 32 GCMs in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) during the period 1900–2005 are used, and several metrics, i.e., bias, correlation coefficient (R), and root mean square error (RMSE), are applied. The Cowtan data set is adopted as the reference data. The results suggest that the GCMs used can reasonably reproduce the Arctic warming trend during the period 1900–2005, as observed in the observational data, whereas a large variation of inter-model differences exists in modeling the Arctic warming magnitude. With respect to the reference data, most GCMs have large cold biases, whereas others have weak warm biases. Additionally, based on statistical thresholds, the models MIROC-ESM, CSIRO-Mk3-6-0, HadGEM2-AO, and MIROC-ESM-CHEM (bias ≤ ±0.10 °C, R ≥ 0.50, and RMSE ≤ 0.60 °C) are identified as well-performing GCMs. The ensemble of the four best-performing GCMs (ES4), with bias, R, and RMSE values of −0.03 °C, 0.72, and 0.39 °C, respectively, performs better than the ensemble with all 32 members, with bias, R, and RMSE values of −0.04 °C, 0.64, and 0.43 °C, respectively. Finally, ES4 is used to produce projections for the next century under the scenarios of RCP2.6, RCP4.5, and RCP8.0. The uncertainty in the projected temperature is greater in the higher emissions scenarios. Additionally, the projected temperature in the cold half year has larger variations than that in the warm half year.

References

  1. Alexeev VA, Esau I, Polyakov IV, Byam SJ, Sorokina S (2012) Vertical structure of recent Arctic warming from observed data and reanalysis products. Clim Chang 111:215–239. doi:10.1007/s10584-011-0192-8 CrossRefGoogle Scholar
  2. Bekryaev RV, Polyakov IV, Alexeev VA (2010) Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J Clim 23:3888–3907. doi:10.1175/2010JCLI3297.1 CrossRefGoogle Scholar
  3. Belleflamme A, Fettweis X, Lang C, Erpicum M (2013) Current and future atmospheric circulation at 500 hPa over Greenland simulated by the CMIP3 and CMIP5 global models. Clim Dyn 41:2061–2080. doi:10.1007/s00382-012-1538-2 CrossRefGoogle Scholar
  4. Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I (2011) The HadGEM2 family of Met Office unified model climate configurations. Geosci Model Dev 4:723–757. doi:10.5194/gmd-4-723-2011 CrossRefGoogle Scholar
  5. Boeke RC, Taylor PC (2016) Evaluation of the Arctic surface radiation budget in CMIP5 models. J Geophys Res Atmos 121:8525–8548. doi:10.1002/2016JD025099 CrossRefGoogle Scholar
  6. Chapman WL, Walsh JE (2007) Simulations of Arctic temperature and pressure by global coupled models. J Clim 20:609–632. doi:10.1175/JCLI4026.1 CrossRefGoogle Scholar
  7. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nature Geos 7:627–637. doi:10.1038/NGEO2234 CrossRefGoogle Scholar
  8. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703. doi:10.1029/2007GL031972 CrossRefGoogle Scholar
  9. Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. QJR Meteorol Soc 140:1935–1944. doi:10.1002/qj.2297 CrossRefGoogle Scholar
  10. Davy R, Esau I (2015) Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth. Nat Commun 7:11690. doi:10.1038/ncomms11690 CrossRefGoogle Scholar
  11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. QJR Meteorol Soc 137:553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  12. Drobot SD (2007) Using remote sensing data to develop seasonal outlooks for Arctic regional sea-ice minimum extent. Remote Sens Environ 111:136–147. doi:10.1016/j.rse.2007.03.024 CrossRefGoogle Scholar
  13. Esau I, Davy R, Outten S (2012) Complementary explanation of temperature response in the lower atmosphere. Environ Res Lett 7:044026. doi:10.1088/1748-9326/7/4/044026 CrossRefGoogle Scholar
  14. Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L06801. doi:10.1029/2012GL051000 CrossRefGoogle Scholar
  15. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang Z, Zhang M (2011) The Community Climate System Model Version 4. J Clim 24:4973–4991. doi:10.1175/2011JCLI4083.1 CrossRefGoogle Scholar
  16. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06104. doi:10.1029/2007JD008972 CrossRefGoogle Scholar
  17. Graversen RG, Mauritsen T, Tjernström M, Källén E, Svensson G (2008) Vertical structure of recent Arctic warming. Nature 451:53–57. doi:10.1038/nature06502 CrossRefGoogle Scholar
  18. Griffies SM, Winton M, Donner LJ, Horowitz LW, Downes SM, Farneti R, Gnanadesikan A, Hurlin WJ, Lee H, Liang Z, Palter JB, Samuels BL, Wittenberg AT, Wyman BL, Yin J, Zadeh N (2011) The GFDL cm3 coupled climate model: characteristics of the ocean and sea ice simulations. J Clim 24:3520–3544. doi:10.1175/2011JCLI3964.1 CrossRefGoogle Scholar
  19. Hall A, Qu X (2006) Using a current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys Res Lett 33:L03502. doi:10.1029/2005GL025127 Google Scholar
  20. Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104:30997–31022. doi:10.1029/1999JD900835 CrossRefGoogle Scholar
  21. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. doi:10.1029/2010RG000345 CrossRefGoogle Scholar
  22. Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36:L08707. doi:10.1029/2008GL037079 CrossRefGoogle Scholar
  23. IPCC AR5 (2013) Climate change 2013: the physical science basis, the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  24. Jahn A, Aksenov Y, de Cuevas BA, de Steur L, Häkkinen S, Hansen E, Herbaut C, Houssais M-N, Karcher M, Kauker F, Lique C, Nguyen A, Pemberton P, Worthen D, Zhang J (2012) Arctic ocean freshwater: how robust are model simulations? J Geophys Res 117:C00D16. doi:10.1029/2012JC007907 CrossRefGoogle Scholar
  25. Jeffrey S, Rotstayn L, Collier M, Dravitzki S, Hamalainen C, Moeseneder C, Wong K, Syktus J (2013) Australia’s CMIP5 submission using the CSIRO Mk3.6 model. Aust Meteor Oceanogr J 63:1–13CrossRefGoogle Scholar
  26. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–470. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  27. Karl TR, Arguez A, Huang B, Lawrimore JH, McMahon JR, Menne MJ, Peterson TC, Vose RS, Zhang HM (2015) Climate change. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348:1469–1472. doi:10.1126/science.aaa5632 CrossRefGoogle Scholar
  28. Kattsov V, Källen E (2005) Future changes of climate: modelling and scenarios for the Arctic. In: Arctic Climate Impact Assessment (ACIA). Cambridge University Press, Cambridge, pp 99–150Google Scholar
  29. Knutti R (2008) Should we believe model predictions of future climate change? Philos Trans A Math Phys Eng Sci 366:4647–4664. doi:10.1098/rsta.2008.0169 CrossRefGoogle Scholar
  30. Koenigk T, Devasthale A, Karlsson KG (2014) Summer Arctic sea ice albedo in CMIP5 models. Atmos Chem Phys 14:1987–1998. doi:10.5194/acp-14-1987-2014 CrossRefGoogle Scholar
  31. Koenigk T, Berg P, Döscher R (2015) Arctic climate change in an ensemble of regional cordex simulations. Polar Res 34:24603. doi:10.3402/polar.v34.24603 CrossRefGoogle Scholar
  32. Li J, Wu Z (2012) Importance of autumn Arctic sea ice to northern winter snowfall. Proc Natl Acad Sci U S A 109:E1898. doi:10.1073/pnas.1205075109 CrossRefGoogle Scholar
  33. Liu J, Curry JA, Wang H, Song M, Horton RM (2012) Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci U S A 109:4074–4079. doi:10.1073/pnas.1114910109 CrossRefGoogle Scholar
  34. Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  35. Mooney PA, Mulligan FJ, Fealy R (2010) Comparison of ERA-40, ERA-Interim and NCEP/NCAR reanalysis data with observed surface air temperature over Ireland. Int J Climatol 31:487–632. doi:10.1002/joc.2098 Google Scholar
  36. Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J Geophys Res 117:D08101. doi:10.1029/2011JD017187 CrossRefGoogle Scholar
  37. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JF, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823 CrossRefGoogle Scholar
  38. Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, La Rovere EL (2000) IPCC special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, New YorkGoogle Scholar
  39. Overland JE, Wang M (2007) Future regional Arctic sea ice declines. Geophys Res Lett 34:L17705. doi:10.1029/2007GL030808 CrossRefGoogle Scholar
  40. Overland JE, Wang MY (2010) Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62:1–9. doi:10.1111/j.1600-0870.2009.00421.x CrossRefGoogle Scholar
  41. Overland JE, Wang M, Bond NA, Walsh JE, Kattsov VM, Chapman WL (2011) Considerations in the selection of global climate models for regional climate projections: the Arctic as a case study. J Clim 24:1583–1597. doi:10.1175/2010JCLI3462.1 CrossRefGoogle Scholar
  42. Park H, Lee S, Kosaka Y, Son S, Kim S (2015) The impact of Arctic winter infrared radiation on early summer sea ice. J Clim 28:6281–6296. doi:10.1175/JCLI-D-14-00773.1 CrossRefGoogle Scholar
  43. Pyper BJ, Peterman RM (1998) Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can J Fish Aquat Sci 55:2127–2140. doi:10.1139/cjfas-55-9-2127 CrossRefGoogle Scholar
  44. Räisänen J (2007) How reliable are climate models? Tellus A 59:2–9. doi:10.1111/j.1600-0870.2006.00211.x CrossRefGoogle Scholar
  45. Reifen C, Toumi R (2009) Climate projections: past performance no guarantee of future skill? Geophys Res Lett 36:L13704. doi:10.1029/2009GL038082 CrossRefGoogle Scholar
  46. Rigor IG, Colony RL, Martin S (2000) Variations in surface air temperature observations in the Arctic, 1979–97. J Clim 13:896–914. doi:10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2 CrossRefGoogle Scholar
  47. Santer BD, Bonfils C, Painter JF, Zerlinka MD, Mears C, Soloman S, Schmidt GA, Fyfe JC, Cole JNS, Nazarenko L, Taylor KE, Wentz FJ (2014) Volcanic contribution to decadal changes in tropospheric temperature. Nat Geosci 7:185–189. doi:10.1038/NGEO2098 CrossRefGoogle Scholar
  48. Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337. doi:10.1038/nature09051 CrossRefGoogle Scholar
  49. Screen JA, Deser C, Simmonds I (2012) Local and remote controls on observed Arctic warming. Geophys Res Lett 39:L10709. doi:10.1029/2012GL051598 CrossRefGoogle Scholar
  50. Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Chang 76:241–264. doi:10.1007/s10584-005-9017-y CrossRefGoogle Scholar
  51. Shiklomanov AI, Lammers RB (2009) Record Russian river discharge in 2007 and the limits of analysis. Environ Res Lett 4:045015. doi:10.1088/1748-9326/4/4/045015 CrossRefGoogle Scholar
  52. Shu Q, Song Z, Qiao F (2015) Assessment of sea ice simulations in the CMIP5 models. Cryosphere 9:399–409. doi:10.5194/tc-9-399-2015 CrossRefGoogle Scholar
  53. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733. doi:10.1002/jgrd.50203 CrossRefGoogle Scholar
  54. Solomon S, Daniel JS, Neely RR, Vernier JP, Dutton EG, Thomason LW (2011) The persistently variable ‘background’ stratospheric aerosol layer and global climate change. Science 333:866–870. doi:10.1126/science.1206027 CrossRefGoogle Scholar
  55. Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501. doi:10.1029/2007GL029703 CrossRefGoogle Scholar
  56. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192. doi:10.1029/2000JD900719 CrossRefGoogle Scholar
  57. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD (2005) The ERA-40 re-analysis. QJR Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176 CrossRefGoogle Scholar
  58. Wang SW (2011) Report for Arctic. Adv Clim Change Res 7:230–232Google Scholar
  59. Wang M, Overland JE (2009) A sea ice free summer within 30 years? Geophys Res Lett 36:L07502. doi:10.1029/2009GL037820 Google Scholar
  60. Wang SW, Luo Y, Zhao ZC, Wen XY, Huang JB (2013) Science for global warming. Meteorological, BeijingGoogle Scholar
  61. Watanabe S (2008) Constraints on a non-orographic gravity wave drag parameterization using a gravity wave resolving general circulation model. SOLA 4:61–64. doi:10.2151/sola.2008-016 CrossRefGoogle Scholar
  62. Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) Miroc-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845–872. doi:10.5194/gmd-4-845-2011 CrossRefGoogle Scholar
  63. Wei N, Zhou L, Dai Y (2016) Evaluation of simulated climatological diurnal temperature range in CMIP5 models from the perspective of planetary boundary layer turbulent mixing. Clim Dyn. doi:10.1007/s00382-016-3323-0 Google Scholar
  64. Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O’Donnell J, Rowe CM (1985) Statistics for the evaluation and comparison of models. J Geophys Res 90:8995–9005. doi:10.1029/JC090iC05p08995 CrossRefGoogle Scholar
  65. Wu B, Wang J, Walsh JE (2006) Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J Clim 19:210–225. doi:10.1175/JCLI3619.1 CrossRefGoogle Scholar
  66. Wu Z, Li J, Jiang Z, He J (2011) Predictable climate dynamics of abnormal East Asian winter monsoon: once-in-a-century snowstorms in 2007/2008 winter. Clim Dyn 37:1661–1669. doi:10.1007/s00382-010-0938-4 CrossRefGoogle Scholar
  67. Wu Z, Li X, Li Y, Li Y (2016) Potential influence of Arctic sea ice to the inter-annual variations of East Asian spring precipitation. J Clim 29:2797–2813. doi:10.1175/JCLI-D-15-0128.1 CrossRefGoogle Scholar
  68. Yarnal B, Comrie AC, Frakes B, Brown DP (2001) Developments and prospects in synoptic climatology. Int J Climatol 21:1923–1950. doi:10.1002/joc.675 CrossRefGoogle Scholar
  69. Zappa G, Shaffrey LC, Hodges KI (2013) The ability of CMIP5 models to simulate north Atlantic extratropical cyclones. J Clim 26:5379–5396. doi:10.1175/JCLI-D-12-00501.1 CrossRefGoogle Scholar
  70. Zhang X, Sorteberg A, Zhang J, Gerdes R, Comiso JC (2008) Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys Res Lett 35:L22701. doi:10.1029/20088g gl035607 CrossRefGoogle Scholar
  71. Zhang X, He J, Zhang J, Polyakov I, Gerdes R, Inoue J, Wu P (2012) Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat Clim Chang 3:47–51. doi:10.1038/nclimate1631 CrossRefGoogle Scholar
  72. Zuo JQ, Li WJ, Ren HL (2013) Representation of the Arctic oscillation in the CMIP5 models. Adv Clim Change Res 4:242–249. doi:10.3724/SP.J.1248.2013.242 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Mingju Hao
    • 1
    • 2
  • Jianbin Huang
    • 1
    • 2
  • Yong Luo
    • 1
    • 2
    • 3
  • Xin Chen
    • 1
    • 2
  • Yanluan Lin
    • 1
    • 2
  • Zongci Zhao
    • 1
    • 2
  • Ying Xu
    • 4
  1. 1.Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System ScienceTsinghua UniversityBeijingChina
  2. 2.Joint Center for Global Change StudiesBeijingChina
  3. 3.State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of SciencesLanzhouChina
  4. 4.National Climate CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations