Skip to main content

Advertisement

Log in

Spatiotemporal changes of freezing/thawing indices and their response to recent climate change on the Qinghai–Tibet Plateau from 1980 to 2013

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The spatial and temporal changes of the ground surface freezing indices (GFIs), ground surface thawing indices (GTIs), air freezing indices (AFIs), and air thawing indices (ATIs) in permafrost and seasonally frozen ground regions of the Qinghai–Tibet Plateau (QTP) were analyzed based on the daily ground surface and air temperatures from 69 meteorological stations using the Mann–Kendall test and Sen’s slope estimate. The spatial patterns of the freezing indices (FIs) and thawing indices (TIs) are nearly negatively correlated. On the annual scale, the GFI and GTI are greater than the AFI and ATI in both permafrost and seasonally frozen ground regions. The marked upward and downward trends have been observed for the time series of TI and FI, respectively, since 1998 on the QTP. Moreover, GFI and AFI decrease more significantly in permafrost regions than in seasonally frozen ground regions; the increasing rate of GTI and ATI in the seasonally frozen ground regions is greater than that in the permafrost regions. In permafrost regions, the downward trend of FI is greater than the upward trend of TI. However, the upward trend of TI shows a more drastic change than the FI in the seasonally frozen ground regions. The results indicate that the warming in the permafrost regions is more pronounced in winter than in the other seasons. The summer warming is more pronounced than the other seasons in the seasonally frozen ground regions. The decreasing rate of AFI and GFI increases as the altitude rises, while they decrease with increasing ATI. The average decreasing rate of GFI is greater than that of the AFI in different altitudinal zones. The greatest decrease of FI occurs in permafrost regions in the hinterland of the QTP, which indicates the dominant winter warming in this region. The downward trend of FI and upward trend of TI are responsible for the reported permafrost degradation on the QTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Reference

  • Anisimov OA, Lobanov VA, Reneva SA, Shiklomanov NI, Zhang T, Nelson FE (2007) Uncertainties in gridded air temperature fields and effects on predictive active layer modeling. J Geophys Res Earth Surf 112(F2). doi:10.1029/2006JF000593

  • Brown, J., O.J. Ferrians, Jr., J.A. Heginbottom, and E.S. Melnikov, eds. 1997. Circum-Arctic map of permafrost and ground-ice conditions. Washington, DC: U.S. Geological Survey in Cooperation with the Circum-Pacific Council for Energy and Mineral Resources. Circum-Pacific Map Series CP-45, scale 1:10,000,000, 1 sheet.

  • Cao B, Zhang T, Peng X, Zheng L, Mu C, Wang Q (2015) Spatial variability of freezing-thawing index over the Heihe River Basin. Adv Earth Science 30(3):357–336 (in Chinese)

    Google Scholar 

  • Chen Y, Deng H, Li B, Li Z, Xu C (2014) Abrupt change of temperature and precipitation extremes in the arid region of Northwest China. Quat Int 336:35–43

    Article  Google Scholar 

  • Cheng G, Wu T (2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res Earth Surf 112(F2). doi:10.1029/2006jf000631

  • Qin D, Liu S, Li P (2006) Snow cover distribution, variability, and response to climate change in western China. J Clim 19(9):1820–1833

    Article  Google Scholar 

  • Duan A, Xiao Z (2015) Does the climate warming hiatus exist over the Tibetan Plateau? Sci Rep 5. doi:10.1038

  • Frauenfeld OW (2004) Interdecadal changes in seasonal freeze and thaw depths in Russia. Journal of Geophysical Research 109 (D5)

  • Frauenfeld OW, Zhang T, McCreight JL (2007) Northern Hemisphere freezing/thawing index variations over the twentieth century. Int J Climatol 27(1):47–63. doi:10.1002/joc.1372

    Article  Google Scholar 

  • Jiang F, Hu R, Li Z (2008) Variations and trends of the freezing and thawing index along the Qinghai-Xizang Railway for 1966-2004. J Geogr Sci 18(1):3–16

    Article  Google Scholar 

  • Jiang F, Jilili A, Wang S, Hu R, Li X (2015) Annual thawing and freezing indices changes in the China Tianshan Mountains. Reg Environ Chang 15(2):227–240

    Article  Google Scholar 

  • Jin H, Yu Q, Wang S, Lü L (2008) Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming. Cold Reg Sci Technol 53(3):317–333

    Article  Google Scholar 

  • Kang S, Xu Y, You Q, Flügel WA, Pepin N, Yao T (2010) Review of climate and cryospheric change in the Tibetan Plateau. Environ Res Lett 5(1):015101. doi:10.1088/1748-9326/5/1/015101

    Article  Google Scholar 

  • Kendall MG (1948) Rank correlation methods. Griffin, London

    Google Scholar 

  • King L, Herz T, Hartmann H, Hof R, Jiang T, Ke C, Weid Z, Liu J, Yi C (2006) The PACE monitoring strategy: a concept for permafrost research in Qinghai-Tibet. Quat Int 154-155:149–157

    Article  Google Scholar 

  • Klene AE, Nelson FE, Shiklomanov NI, Hinkel KM (2001) The n-factor in natural landscapes: variability of air and soil-surface temperatures, Kuparuk River Basin, Alaska, USA. Arct Antarct Alp Res 33(2):140–148

    Article  Google Scholar 

  • Kosaka Y, Xie S (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501(7467):403–407

    Article  Google Scholar 

  • Liu X, Yin Z (2002) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 183(3):223–245

    Article  Google Scholar 

  • Li X, Cheng G (1999) A GIS-aided response model of high-altitude permafrost to global change. Sci China Ser D Earth Sci 42(1):72–79

    Article  Google Scholar 

  • Li X, Gemmer M, Zhai J, Liu X, Su B, Wang Y (2013) Spatio-temporal variation of actual evapotranspiration in the Haihe River Basin of the past 50 years. Quat Int 304:133–141

    Article  Google Scholar 

  • Li S, Cheng G (1996) Map of permafrost on the Qinghai-Tibet Plateau Lanzhou: Gansu Culture Press. scale 1:3,000,000

  • Luo D, Jin H, Jin R, Yang X, Lü L (2014) Spatiotemporal variations of climate warming in northern Northeast China as indicated by freezing and thawing indices. Quat Int 349:187–195

    Article  Google Scholar 

  • Ma L, Zhang T, Li Q, Frauenfeld OW, Qin D (2008) Evaluation of ERA-40, NCEP-1, and NCEP-2 reanalysis air temperatures with ground-based measurements in China. J Geophys Res Atmos 113(D15). doi:10.1029/2007JD009549

  • Mann HB (1945) Nonparametric tests against trend. Econ: J Econ Soc 13(3):245–259

    Article  Google Scholar 

  • Ma Y, Zhang Y, Zubrzycki S, Guo Y, Farhan SB (2015) Hillslope-scale variability in seasonal frost depth and soil water content investigated by GPR on the southern margin of the sporadic permafrost zone on the Tibetan Plateau. Permafr Periglac Process 26(4):321–334

    Article  Google Scholar 

  • Nelson F, Outcalt S (1983) A frost index number for spatial prediction of ground-frost zones. Paper presented at the Permafrost-Fourth International Conference Proceedings 1, pp 907–911

  • Nelson FE, Outcalt SI (1987) A computional method for prediction and regionaliztion of permafrost. Arct Alp Res 19(3):279–288. doi:10.2307/1551363

    Article  Google Scholar 

  • Nelson F, Shiklomanov N, Mueller G, Hinkel K, Walker D, Bockheim J (1997) Estimating active-layer thickness over a large region: Kuparuk River basin, Alaska, USA. Arct Alp Res 29(4):367–378

    Article  Google Scholar 

  • Nelson F, Hinkel K, Shiklomanov N, Mueller G, Miller L, Walker D (1998) Active-layer thickness in north central Alaska: systematic sampling, scale, and spatial autocorrelation. J Geophys Res: Atmos 103(D22):963–973

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110(7):699–706

    Article  Google Scholar 

  • Peng X, Zhang T, Cao B, Wang Q, Wang K, Shao W, Guo H (2016) Changes in freezing-thawing index and soil freeze depth over the Heihe River Basin, western China. Arct Antarct Alp Res 48(1):161–176

    Article  Google Scholar 

  • Rangwala I, Miller JR, Xu M (2009) Warming in the Tibetan Plateau: possible influences of the changes in surface water vapor. Geophys Res Lett 36(6). doi:10.1029/2009GL037245

  • Romanovsky V, Osterkamp T (1997) Thawing of the active layer on the coastal plain of the Alaskan Arctic. Permafr Periglac Process 8(1):1–22

    Article  Google Scholar 

  • Sen PK (1968) Estimate of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Article  Google Scholar 

  • Smith MW, Riseborough DW (2002) Climate and the limits of permafrost: a zonal analysis. Permafr Periglac Process 13(1):1–15

    Article  Google Scholar 

  • Smith SL, Wolfe SA, Riseborough DW, Nixon MF (2009) Active-layer characteristics and summer climatic indices, Mackenzie Valley, Northwest Territories, Canada. Permafr Periglac Process 20(2):201–220

    Article  Google Scholar 

  • Sturm M, Holmgren J, Liston GE (1995) A seasonal snow cover classification system for local to global applications. J Clim 8(5):1261–1283

    Article  Google Scholar 

  • Steurer PM, Crandell JH (1995) Comparison of methods used to create estimate of air-freezing index. J Cold Reg Eng 9(2):64–74

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2014) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Shen SSP, Yao R, Ngo J, Basist A, Thomas N, Yao T (2015) Characteristics of the Tibetan Plateau snow cover variations based on daily data during 1997-2011. Theor Appl Climatol 120(3–4):445–453

    Article  Google Scholar 

  • Trenberth KE, Fasullo JT, Branstator G, Phillips AS (2014) Seasonal aspects of the recent pause in surface warming. Nat Clim Chang 4(10):911–916

    Article  Google Scholar 

  • Wang B, Bao Q, Hoskins B, Wu G, Liu Y (2008) Tibetan Plateau warming and precipitation changes in East Asia. Geophys Res Lett 35(14). doi:10.1029/2008GL034330

  • Wang B, Zhang M, Wei J, Wang S, Li X, Li S, Zhao A, Xiao L, Fan J (2013) Changes in extreme precipitation over Northeast China, 1960-2011. Quat Int 298:177–186

    Article  Google Scholar 

  • Wang X (2008) Penalized maximal F test for detecting undocumented mean shift without trend change. J Atmos Ocean Technol 25(3):368–384. doi:10.1175/2007jtecha982.1

    Article  Google Scholar 

  • Wang X, Wen Q, Wu Y (2007) Penalized maximal t test for detecting undocumented mean change in climate data series. J Appl Meteorol Climatol 46(6):916–931. doi:10.1175/jam2504.1

    Article  Google Scholar 

  • Wang X, Yang M, Liang X, Pang G, Wan G, Chen X, Luo X (2014) The dramatic climate warming in the Qaidam Basin, northeastern Tibetan Plateau, during 1961–2010. Int J Climatol 34(5):1524–1537

    Article  Google Scholar 

  • Wu Q, Hou Y, Yun H, Liu Y (2015) Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China. Glob Planet Chang 124:149–155

    Article  Google Scholar 

  • Wu Q, Zhang T (2010) Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J Geophys Res-Atmos 115(D9). doi:10.1029/2009JD012974

  • Wu T, Wang Q, Zhao L, Batkhishig O, Watanabe M (2011) Observed trends in surface freezing/thawing index over the period 1987-2005 in Mongolia. Cold Reg Sci Technol 69(1):105–111

    Google Scholar 

  • Wu T, Zhao L, Li R, Wang Q, Xie C, Pang Q (2013) Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. Int J Climatol 33(4):920–930. doi:10.1002/joc.3479

    Article  Google Scholar 

  • Xie H, Ye J, Liu X, Chongyi E (2010) Warming and drying trends on the Tibetan Plateau (1971-2005). Theor Appl Climatol 101(3–4):241–253

    Article  Google Scholar 

  • Yang M, Nelson FE, Shiklomanov NI, Guo D, Wan G (2010) Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth Sci Rev 103(1):31–44

    Article  Google Scholar 

  • Yang K, Ye B, Zhou D, Wu B, Foken T, Qin J, Zhou Z (2011) Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim Chang 109(3–4):517–534

    Article  Google Scholar 

  • Yin G, Niu F, Lin Z, Lou J, Liu MH (2016) Performance comparison of permafrost models in Wudaoliang Basin, Qinghai-Tibet Plateau, China. J Mt Sci 13(7):1162–1173

    Article  Google Scholar 

  • You Q, Kang S, Aguilar E, Yan Y(2008) Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J Geophys Res-Atmos 113(D7). doi:10.1029/2007jd009389

  • You Q, Kang S, Pepin N, Flugel W, Sanchez-Lorenzo A, Yan Y, Zhang Y (2010) Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset. Glob Planet Chang 72(1–2):11–24. doi:10.1016/j.gloplacha.2010.04.003

    Article  Google Scholar 

  • You Q, Fraedrich K, Ren G, Ye B, Meng X, Kang S (2012) Inconsistencies of precipitation in the eastern and central Tibetan Plateau between surface adjusted data and reanalysis. Theor Appl Climatol 109(3–4):485–496

    Article  Google Scholar 

  • Yue S, Pilon P, Cavadias G (2002) Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J Hydrol 259(1–4):254–271. doi:10.1016/s0022-1694(01)00594-7

    Article  Google Scholar 

  • Zhao L, Ping C, Yang D, Cheng G, Ding Y, Liu S (2004) Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–Xizang (Tibetan) plateau, China. Glob Planet Chang 43(1):19–31

    Article  Google Scholar 

  • Zhang T, Osterkamp T, Stamnes K (1996) Some characteristics of the climate in northern Alaska, USA. Arct Alp Res 28(4):509–518

    Article  Google Scholar 

  • Zhang T (2005) Influence of the seasonal snow cover on the ground thermal regime: an overview. Rev Geophys 43(4):1–23

    Article  Google Scholar 

  • Zhang T, Frauenfeld OW, Serreze MC, Etringer A, Oelke C, McCreight J, Ye H (2005) Spatial and temporal variability in active layer thickness over the Russian Arctic drainage basin. J Geophys Res Atmos 110(D16). doi:10.1029/2004JD005642

  • Zhang W, Zhou J, Wang G, Kinzelbach W, Cheng G, Ye B, He X, Li H (2013) Monitoring and modeling the influence of snow cover and organic soil on the active layer of permafrost on the Tibetan Plateau. J Glaciol Geocryol 35(3):528–540 (in Chinese)

    Google Scholar 

  • Zhou Y, Guo D, Qiu G, Cheng G, Li S (2000) Geocryology in China. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Zhu X, Wu T, Li R, Wang S, Hu G, Wang W, Qin Y, Yang S (2016) Characteristics of the ratios of snow, rain and sleet to precipitation on the Qinghai-Tibet Plateau during 1961 to 2014. Quat Int. doi:10.1016/j.quaint.2016.07.030

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (41690142, 41421061,41271086, 41671070) and the Hundred Talents Program of Chinese Academy of Sciences (51Y551831).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonghua Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Qin, Y., Wu, X. et al. Spatiotemporal changes of freezing/thawing indices and their response to recent climate change on the Qinghai–Tibet Plateau from 1980 to 2013. Theor Appl Climatol 132, 1187–1199 (2018). https://doi.org/10.1007/s00704-017-2157-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-017-2157-y

Navigation